• 제목/요약/키워드: Structural Error

검색결과 1,018건 처리시간 0.025초

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

정적변위와 진동모우드 특성치의 합성자료를 이용한 구조물의 손상도 추정 (Structural Damage Detection Based on Composite Data of Static and Modal Test)

  • 정범석;한종석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.147-155
    • /
    • 1996
  • The purpose of present study is to propose a improved damage detection and assessment algorithm that has its basis on the method of system identification. In this approach, the complete sets of modes or displacements are not needed since the error response function involves only the difference between components of those vectors. The present approach also allows the use of composite data which is constitute of static displacements and eigenmodes. The effectiveness of the proposed statistical system identification method is investigated through simulated studies. A series of tests for predetermined damaged cantilever beam and bowstring truss structure have been conducted to verify the proposed method.

  • PDF

Sensor selection approach for damage identification based on response sensitivity

  • Wang, Juan;Yang, Qing-Shan
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.53-68
    • /
    • 2017
  • The response sensitivity method in time domain has been applied extensively for damage identification. In this paper, the relationship between the error of damage identification and the sensitivity matrix is investigated through perturbation analysis. An index is defined according to the perturbation amplify effect and an optimal sensor placement method is proposed based on the minimization of that index. A sequential sub-optimal algorithm is presented which results in consistently good location selection. Numerical simulations with a two-dimensional high truss structure are conducted to validate the proposed method. Results reveal that the damage identification using the optimal sensor placement determined by the proposed method can identify multiple damages of the structure more accurately.

주파수영역 손상식별 SI 기법에 적응할 최적센서 위치결정법 (Determination of Optimal Sensor Locations for Modal System Identification-based Damage Detection on Structures)

  • 권순정;신수봉;박영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 2003
  • To define an analytical model for a structural system or to assess damage in the system, system identification(SI) methods have been developed and widely applied. The paper presents a method of determining optimal sensor location(OSL) based on the maximum likelihood approach, which is applicable to modal SI methods. To estimate unknown parameters reliably, it is necessary that the information provided by the experiment should be maximized. By applying the Cramer-Rao inequality, a Fisher information matrix in terms of the probability density function of measurements is obtained from a lower bound of the estimation error. The paper also proposes a scheme of determining of OSL on damaged structures by using maximum strain energy factor. Simulation studies have carried out to investigate the proposed OSL algorithm for both undamaged and damaged structures.

  • PDF

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

모달필터 성능을 고려한 센서의 최적위치 (Sensor Placement in Structural Vibration Control For the Performance of Modal Filter)

  • 황재혁;김준수;백승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.308-315
    • /
    • 1997
  • In this study, the effect of modal filter error on the vibration control characteristics of flexible structures is analyzed for IMSC(Independent Modal Space Control), and optimal sensor placement in the structural vibration control with consideration of performance of modal filter has been studied. An Lyapunov asymptotic stability condition has been derived, which depends on the magnitude of the modal filter errors. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator techniques. A sensor placement technique has also been suggested to maximize the performance of the modal filter. It has been found by a series of simulation that the suggested sensor placement technique is very effective on the determination of the number and placement of sensors of modal filter in the structural vibration control.

  • PDF

Response prediction of a 50 m guyed mast under typhoon conditions

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • 제9권5호
    • /
    • pp.397-412
    • /
    • 2006
  • This paper presents the wind excited acceleration responses of a 50 m guyed mast under the action of Typhoon Dujuan. The response of the structure is reconstructed from using a full finite element model and an equivalent beam-column model. The wind load is modelled based on the measured wind speed and recommendations for high-rise structures. The nonlinear time response analysis is conducted using the Newton Raphson iteration procedure. Comparative studies on the measured and computed frequencies and acceleration responses show that the torsional vibration of the structure is significant particularly in the higher vibration modes after the first few bending modes. The equivalent model, in general, gives less accurate amplitude predictions than the full model because of the omission of torsional stiffness of the mast in the vibration analysis, but the root-mean-square value is close to the measured value in general with an error of less than 10%.

가동변형형상을 이용한 철도구조물의 손상인식 (Damage identification in a railroad structures using operational deflection shape)

  • 최상현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.56-64
    • /
    • 2008
  • To maintain effectively the functionality of major railroad facilities such as bridges, identifying and evaluating damage in a structure and taking appropriate action via continuous structural health monitoring are very important. However, most damage identification methods for structural health monitoring developed to date utilize modal domain responses which inevitably contain errors in transforming the domain of responses. In this paper, a damage identification method using time-domain operational deflection shapes is proposed. Since the proposed method utilizes time-domain responses, the error in the process of transformation to response domain can be avoided, and the accuracy of structural health evaluation can be improved. The feasibility of the proposed method is verified via a numerical example of a simple bridge structure.

  • PDF

반해석적 방법을 이용한 고유치 문제의 형상 설계 민감도 향상에 관한 연구 (A study on the improvement of shape design sensitivity in eigenvalue problems using semi-analytical method)

  • 김현기;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.159-166
    • /
    • 2001
  • Structural optimization often requires the evaluation of design sensitivities. The Semi Aanalytic method(SAM) for computing sensitivity is popular in shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements, the SA method shows severe inaccuracy. In this paper, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover, the error of the SA method caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms. Finally, this paper shows that the refined SA method including the iterative method improves the results of sensitivity analysis in dynamic problems.

  • PDF