• 제목/요약/키워드: Strongly coupled

검색결과 231건 처리시간 0.031초

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Nikolic, Mijo
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.43-59
    • /
    • 2018
  • The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.

보 요소를 이용한 파이프의 구조-음향 연성해석 (Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element)

  • 서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF

비균질한 천해에서의 수중음파 전파 (Underwater Sound Propagation in a range-dependent Shallow water environment)

  • 나정열
    • 한국음향학회지
    • /
    • 제6권4호
    • /
    • pp.64-73
    • /
    • 1987
  • 비균질한 천해에서의 저주파 수중음파의 전파 특성을 수치모델을 이용 분석하였다. 특히 전파매질의 비균질성이 독특한 대한해협의 겨울철 해수특성을 고려하여 음속의 수평변화, 저질두께 및 감쇠계수의 변화, 수심의 변화등 천혜의 독특한 환경 변화요인을 거의 망라한 경우를 모델로 삼았다. 음원과 수신기의 수심을 수면가까이에 둔 경우소위Mode function의 수심에 따른 특성에 의한 손실이 일반적인 손실원인보다 크게 나타났으며 Adiabatic approximation을 이용한 Mode coupling효과는 High Mode의 감쇠특성에 의해 천해에서의 모델 적용 가능성을 보여주었다.

  • PDF

The Effect of Pinholes on Magnetic Behaviour of Antiferromagnetically Coupled Ni-Fe/Cu Mulitlayers

  • Stobiecki, F;Lucinski, T;Dubowik, J;Szymanski, B;Urbaniak, M;Castano, F.J;Stobiecki, T
    • Journal of Magnetics
    • /
    • 제3권3호
    • /
    • pp.89-91
    • /
    • 1998
  • The magnetisation behaviour of polycrystalline permalloy/copper multilayers with mixed antiferromagnetic/ferromagnetic coupling was investigated as function of temperature. The results are discussed in a framework of a realistic model of anitferromagnetically coupled layers connected by ferromagnetic pinholes. A microstructure of pinholes (their density and dimensions) was varied either by a proper annealing treatment or by choosing samples with various Cu spacer thicknesses. It was demonstrated that the temperature changes of the net magnetic moment measured in a magnetic field smaller than the saturation field was strongly affected by the composition of the pinholes, their density, cross-sectional area and their lengths.

  • PDF

유도결합 플라즈마 화학기상증착법을 이용한 Ni/SiO2/Si 기판에서 그라핀 제조 (Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition)

  • 박영수;허훈회;김의태
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.522-526
    • /
    • 2009
  • Graphene has been effectively synthesized on Ni/SiO$_2$/Si substrates with CH$_4$ (1 SCCM) diluted in Ar/H$_2$(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 $^{\circ}C$, although CH$_4$ and Ar/H$_2$ gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm$^{-1}$, respectively. With increase of growth temperature to 900 $^{\circ}C$, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 $^{\circ}C$ on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.

Insight into coupled forced vibration method to identify bridge flutter derivatives

  • Xu, Fuyou;Ying, Xuyong;Zhang, Zhe
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.273-290
    • /
    • 2016
  • The flutter derivatives of bridge decks can be efficiently identified using the experimentally and/or numerically coupled forced vibration method. This paper addresses the issue of inherent requirement for adopting different frequencies of three modes in this method. The aerostatic force components and the inertia of force and moment are mathematically proved to exert no influence on identification results if the signal length (t) is integer (n=1,2,3...) times of the least common multiple (T) of three modal periods. It is one important contribution to flutter derivatives identification theory and engineering practice in this study. Therefore, it is unnecessary to worry about the determination accuracy of aerostatic force and inertia of force and moment. The influences of signal length, amplitude, and frequency ratio on flutter derivative are thoroughly investigated using a bridge example. If the signal length t is too short, the extraction results may be completely wrong, and particular attention should be paid to this issue. The signal length t=nT ($n{\geq}5$) is strongly recommended for improving parameter identification accuracy. The proposed viewpoints and conclusions are of great significance for better understanding the essences of flutter derivative identification through coupled forced vibration method.

고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구 (A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1998년도 학술발표회논문집
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF