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EXISTENCE OF POSITIVE SOLUTION FOR THE SECOND

ORDER DIFFERENTIAL SYSTEMS WITH INTEGRAL

BOUNDARY CONDITIONS.

You-Young Cho, Jinhee Jin, and Eun Kyoung Lee∗

Abstract. This paper is concerned with the existence of positive solu-

tions to the second order differential systems with strongly coupled integral
boundary value conditions. The fixed point index theorems are used for

the main results.

1. Introduction

The main problem of this paper is motivated from the existence of positive
radial solutions to the following nonlocal boundary value system :

∆u+ h1(|x|)f1(u(x), v(x)) = 0, x ∈ Er0 ,

∆v + h2(|x|)f2(u(x), v(x)) = 0, x ∈ Er0 ,

u(x) → 0, v(x) → 0, if |x| → ∞,

u(x) =
∫
Er0

l1(|y|)u(y) + l2(|y|)v(y)dy, if |x| = r0,

v(x) =
∫
Er0

l3(|y|)u(y) + l4(|y|)v(y)dy, if |x| = r0,

(1)

where Er0 = {x ∈ RN : |x| ≥ r0 for r0 > 0, N ≥ 3}, hi ∈ C((r0,∞), (0,∞))
is such that

∫∞
r0

rhi(r)dr < ∞, fi ∈ C([0,∞)2, [0,∞)) for i = 1, 2, and lj ∈
L1((r0,∞)) is a nonnegative function satisfying 0 < wNrN−2

0

∫∞
r0

rlj(r)dr < 1

for each j = 1, 2, 3, 4, when wN is the surface area of unit sphere in RN .
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Such differential equations with an integral boundary condition arise in vari-
ous areas of applied mathematics and physics like heat conduction, chemical en-
gineering, underground water flow, thermo-elasticity and plasma phenomena([2]
and [3]). One may refer to [1]∼[6] and [8]∼[10] for integral boundary value prob-
lems and the references therein.

Note that the change of variables r = |x| and t = ( r
r0
)2−N transforms (1)

into: 

u′′(t) + a1(t)f1(u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + a2(t)f2(u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = 0 = v(0),

u(1) =
∫ 1

0
g1(s)u(s) + g2(s)v(s)ds,

v(1) =
∫ 1

0
g3(s)u(s) + g4(s)v(s)ds

(2)

with

ai(t) =

(
1

N − 2

)2

r20t
−2(N−1)

N−2 hi

(
r0t

−1
N−2

)
,

gi(t) = wN

(
1

N − 2

)
rN0 t

−2(N−1)
N−2 li

(
r0t

−1
N−2

)
,

where ai ∈ C((0, 1), [0,∞)) such that
∫ 1

0
s(1− s)ai(s)ds < ∞ for i ∈ {1, 2} and

a nonnegative function gi ∈ L1(0, 1) is such that 0 <
∫ 1

0
sgj(s)ds < 1 for each

j ∈ {1, 2, 3, 4}. We know that the existence of positive solutions for the system
(2) guarantees the existence of positive radial solutions for (1). Hence we focus
on the system (2) to investigate solutions for (1).

Throughout this paper, we assume the following hypothesis;

(H1)
(
1−

∫ 1

0
sg1(s)ds

)(
1−

∫ 1

0
sg4(s)ds

)
−
∫ 1

0
sg2(s)ds

∫ 1

0
sg3(s)ds > 0.

(H2) There exist constants λij , µij with 0 < λij ≤ µij ,
∑2

j=1 λij > 1 for i, j ∈
{1, 2} such that for t ∈ (0, 1), u, v ∈ (0,∞), and i ∈ {1, 2},

cµi1fi(u, v) ≤ fi(cu, v) ≤ cλi1fi(u, v), if 0 < c ≤ 1, (3)

cµi2fi(u, v) ≤ fi(u, cv) ≤ cλi2fi(u, v), if 0 < c ≤ 1. (4)

Remark 1. (i) (3) and (4) imply

cλi1fi(u, v) ≤ fi(cu, v) ≤ cµi1fi(u, v), if c ≥ 1 for i ∈ {1, 2}, (5)

and

cλi2fi(u, v) ≤ fi(u, cv) ≤ cµi2fi(u, v), if c ≥ 1 for i ∈ {1, 2}, (6)
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respectively. Conversely, (5) implies (3) and (6) implies (4).
(ii) (3) and (4) imply

fi(u1, u2) ≤ fi(v1, v2), if 0 < uj ≤ vj , for i, j ∈ {1, 2}. (7)

This paper is organized as follows. In Section 2, we shall give some prelim-
inary results and lemmas to prove our main results. In Section 3, the main
result, Theorem 3.1, is proven.

2. Preliminaries

We set up the operator for problem (2). Let E := C([0, 1],R)×C([0, 1],R) be
the Banach space with the norm ∥(u, v)∥ = max{∥u∥∞, ∥v∥∞}. Let us denote

A :=

(
1−

∫ 1

0
sg1(s)ds −

∫ 1

0
sg2(s)ds

−
∫ 1

0
sg3(s)ds 1−

∫ 1

0
sg4(s)ds

)
,

then by (H1), detA ̸= 0 and aij > 0 for all i, j ∈ {1, 2}, where

A−1 =

(
a11 a12
a21 a22

)
.

Define

P := {(u, v) ∈ E | u(t) ≥ γt∥(u, v)∥, v(t) ≥ γt∥(u, v)∥, t ∈ [0, 1]},
where

ρ = max

{
1 +

∫ 1

0

q1(τ)dτ, 1 +

∫ 1

0

q2(τ)dτ,

∫ 1

0

q3(τ)dτ,

∫ 1

0

q4(τ)dτ

}
,

ν = min

{∫ 1

0

τ(1− τ)qj(τ)dτ
∣∣ j = 1, 2, 3, 4

}
and 0 < γ =

ν

ρ
< 1

with q1(τ) := a11g1(τ) + a12g3(τ), q2(τ) := a21g2(τ) + a22g4(τ), q3(τ) :=
a11g2(τ) + a12g4(τ), and q4(τ) := a21g1(τ) + a22g3(τ). Clearly, P is a cone
of E and we define S1, S2 : P → Q = {u ∈ C([0, 1],R) | u(t) ≥ 0, t ∈ [0, 1]} by

S1(u, v)(t) :=
∫ 1

0
(H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s)))ds,

S2(u, v)(t) :=
∫ 1

0
(H2(t, s)a2(s)f2(u(s), v(s)) + tK2(s)a1(s)f1(u(s), v(s)))ds,

where

H1(t, s) = G(t, s) + t

∫ 1

0

G(τ, s)(a11g1(τ) + a12g3(τ))dτ,

H2(t, s) = G(t, s) + t

∫ 1

0

G(τ, s)(a21g2(τ) + a22g4(τ))dτ,

K1(s) =

∫ 1

0

G(τ, s)(a11g2(τ) + a12g4(τ))dτ,

K2(s) =

∫ 1

0

G(τ, s)(a21g1(τ) + a22g3(τ))dτ,
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and

G(t, s) =

 t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Now we define an operator S : P → Q×Q by

S(u, v) = (S1(u, v), S2(u, v)).

Remark 2. It is easy to check that

t(1− t)s(1− s) ≤ G(t, s) = G(s, t) ≤ s(1− s), t, s ∈ [0, 1]. (8)

From (8), we have

Hi(t, s) ≤ ρs(1− s), Ki(s) ≤ ρs(1− s), i ∈ {1, 2}, (9)

Hi(t, s) ≥ νts(1− s), Ki(s) ≥ νs(1− s), i ∈ {1, 2}. (10)

For (u, v) ∈ P, let c be a positive number such that c > max{∥(u, v)∥, 1}.
From (3), (4) and (7), we have

fi(u(t), v(t)) ≤ fi(c, c) ≤ cµi1+µi2fi(1, 1), i ∈ {1, 2}. (11)

By (9) and (11), we have

Si(u, v)(t) =

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s))ds+ t

∫ 1

0

K1(s)a2(s)f2(u(s), v(s))ds

≤ ρ

∫ 1

0

s(1− s)a1(s)f1(u(s), v(s))ds+ ρt

∫ 1

0

s(1− s)a2(s)f2(u(s), v(s))ds

≤ ρcµ11+µ12

∫ 1

0

s(1− s)a1(s)f1(1, 1)ds+ ρtcµ21+µ22

∫ 1

0

s(1− s)a2(s)f2(1, 1)ds.

Thus S is well defined on P and it is notice that S is completely continuous,
by standard argument and if (u, v) ∈ P is a fixed point of S, then (u, v) is a
positive solution of differential system (2).

Lemma 2.1. Assume that (H1) and (H2) hold. Then S(P ) ⊂ P.

Proof. From (10), for t, s ∈ [0, 1], we know

Ki(s) ≥ γρs(1− s), Hi(t, s) ≥ γρts(1− s), i ∈ {1, 2}. (12)

Then by (9) and (12), we have for τ, t, s ∈ [0, 1],

Hi(t, s) ≥ γtHj(τ, s), Ki(s) ≥ γHj(τ, s), Hi(t, s) ≥ γtKj(s), i, j ∈ {1, 2}.
(13)

For (u, v) ∈ P and t, τ ∈ [0, 1], by using (13), we have

S1(u, v)(t) =

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s))ds+ t

∫ 1

0

K1(s)a2(s)f2(u(s), v(s))ds

≥ γt

∫ 1

0

H1(τ, s)a1(s)f1(u(s), v(s))ds+ γtτ

∫ 1

0

K1(s)a2(s)f2(u(s), v(s))ds

= γtS1(u, v)(τ),
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and

S1(u, v)(t) =

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s))ds+ t

∫ 1

0

K1(s)a2(s)f2(u(s), v(s))ds

≥ γtτ

∫ 1

0

K2(s)a1(s)f1(u(s), v(s))ds+ γt

∫ 1

0

H2(τ, s)a2(s)f2(u(s), v(s))ds

= γtS2(u, v)(τ).

Then S1(u, v)(t) ≥ γt∥S1(u, v)∥∞ and S1(u, v)(t) ≥ γt∥S2(u, v)∥∞ and thus

S1(u, v)(t) ≥ γt∥(S1(u, v), S2(u, v))∥.

In the same way, we obtain that S2(u, v)(t) ≥ γt∥(S1(u, v), S2(u, v))∥. Therefore
S(P ) ⊂ P.

□

To show the existence of a positive solution of (2), we need the following
lemmas for fixed point index argument in [7].

Lemma 2.2. Let X be a Banach space, P a cone in X. For r > 0, define
Pr = {x ∈ P : ∥x∥ < r}. Assume that T : P̄r → P is a compact map such that
Tx ̸= x for all x ∈ ∂Pr. If ∥x∥ ≤ ∥Tx∥ for all x ∈ ∂Pr, then

i(T, Pr, P ) = 0.

Lemma 2.3. Let X be a Banach space, P a cone in X and Ω bounded open in
X. Let 0 ∈ Ω and T : P ∩ Ω̄ → P be condensing. Suppose that Tx ̸= νx for all
x ∈ P ∩ ∂Ω and all ν ≥ 1. Then

i(T, P ∩ Ω, P ) = 1.

3. Main Result

Theorem 3.1. Assuming that (H1) and (H2) hold, the differential system (2)
has at least one positive solution.

Proof. Choose a constant R > 0 such that

R > max{ 1
γ
+ 1, (σγλ11+λ12)−

1
λ11+λ12−1 , (σγλ21+λ22)−

1
λ21+λ22−1 },

where σ = ν
4

∫ 1

0
(γs)µ11+µ12s(1− s)a1(s)f1(1, 1)ds > 0. For real constant r > 0,

define Ωr = {(u, v) ∈ P | ∥(u, v)∥ < r}. We may suppose that S(u, v) ̸= (u, v)
for (u, v) ∈ ∂ΩR since otherwise the proof is done. For (u1, v1) ∈ ∂ΩR, by the
definition of P and the choice of R,

u1(s) ≥ γs∥(u1, v1)∥ ≥ γs∥u1∥∞, v1(s) ≥ γs∥(u1, v1)∥ ≥ γs∥v1∥∞ (14)

and

∥u1∥∞ ≥ u1(1) ≥ γ∥(u1, v1)∥ = γR > 1, ∥v1∥∞ ≥ γ∥(u1, v1)∥ > 1. (15)
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By using (3) ∼ (6) and (15), it is easy to check that for s ∈ [0, 1],

f(γs∥u1∥∞, γs∥v1∥∞) ≥ (γs)µ11+µ12∥u1∥λ11
∞ ∥v1∥λ12

∞ f(1, 1). (16)

By (7), (14) ∼ (16), we have, for t ∈ [ 14 , 1],

S1(u1, v1)(t) ≥
∫ 1

0

H1(t, s)a1(s)f1(u1(s), v1(s))ds

≥ ν

4

∫ 1

0

s(1− s)a1(s)f1(γs∥u1∥∞, γs∥v1∥∞)ds

≥ ν

4
∥u1∥λ11

∞ ∥v1∥λ12
∞

∫ 1

0

s(1− s)(γs)µ11+µ12a1(s)f1(1, 1)ds

= σ∥u1∥λ11
∞ ∥v1∥λ12

∞

≥ σ(γ∥(u1, v1)∥)λ11(γ∥(u1, v1)∥)λ12

= σγλ11+λ12Rλ11+λ12 .

Since 1− (λ11 + λ12) < 0, σγλ11+λ12 ≥ R1−(λ11+λ12) and we obtain

∥S(u1, v1)∥ ≥ ∥S1(u1, v1)∥∞
≥ σγλ11+λ12Rλ11+λ12

≥ R1−(λ11+λ12)Rλ11+λ12

= R = ∥(u1, v1)∥.

By Lemma 2.2, we have

i(S,ΩR, P ) = 0. (17)

Next, we claim that

S(u, v) ̸= τ(u, v), for all (u, v) ∈ ∂Ωr, τ ≥ 1, (18)

where

0 < r < min{1
2
, δ−

1
λ−1 }, λ = min{λ11 + λ12, λ21 + λ22} > 1,

δ = ρ

(∫ 1

0

s(1− s)a1(s)f1(1, 1)ds+

∫ 1

0

s(1− s)a2(s)f2(1, 1)ds

)
.

Otherwise, there exist (u2, v2) ∈ ∂Ωr and τ̄ ≥ 1 such that

S(u2, u2) = τ̄(u2, v2). (19)

Without loss of generality, we assume that ∥u2∥∞ ≥ ∥v2∥∞ and we know

u2(s) ≤ ∥u2∥∞ = ∥(u2, v2)∥ = r < 1, v2(s) ≤ ∥v2∥∞ ≤ ∥u2∥∞ = r < 1 (20)
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By using (3), (4), (7), (9), (19) and (20), it follows that

τ̄u2(t) = S1(u2, v2)(t)

≤
∫ 1

0

H1(t, s)a1(s)f1(u2(s), v2(s))ds+

∫ 1

0

K1(s)a2(s)f2(u2(s), v2(s))ds

≤ ρ

∫ 1

0

s(1− s)a1(s)f1(r, r)ds+ ρ

∫ 1

0

s(1− s)a2(s)f2(r, r)ds

≤ ρrλ11+λ12

∫ 1

0

s(1− s)a1(s)f1(1, 1)ds+ ρrλ21+λ22

∫ 1

0

s(1− s)a2(s)f2(1, 1)ds

≤ δrλ, t ∈ [0, 1].

Consequently,

r = ∥u2∥∞ < τ̄∥u2∥∞ ≤ δrλ,

namely

r ≥ δ−
1

λ−1 ,

which is a contradiction. Hence (18) is true and by Lemma 2.3, we have

i(S,Ωr, P ) = 1. (21)

By (17), (21) and the properties of the fixed point index, we have

i(S,ΩR \ Ωr, P ) = i(S,ΩR, P )− i(S,Ωr, P ) = −1.

Thus S has at least one fixed on ΩR \ Ωr. This means that differential system
(2) has at least one positive solution. The proof is complete. □
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