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ABSTRACT

Low frequency sound propagation in a range-dependent shallow water environment of the Korea
Strait has been studied by using the adiabatic coupled mode model, ADIAB, The range-dependent en-
vironment is unique in terms of horizontal variations of sound velocity profiles, sediment thickness and
attenuation coefficients and water depths. For shallow source and receiver depths, the most important
mechanism involved in the propagation loss is the depth changing character of mode functions that
strongly depends on the local sound velocity profils. Application of the adiabatic coupled mode theory
to shallow water environment is reasonable when higher modes are attenuated due to bottom interaction

effects.
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Underwater sound propagation in a range-
dependent shallow-water environment

I. INTRODUCTION

In a horizontally stratified medium, the
varations in the properties of the waveguide
are festricted to the vertical direction. The
types of variations of the medium encountered
in the ocean are depth changing sound speed
and ,density. On the other hand the range
dependence in the ocean is always present,
though it is in general much weaker than the
depth dependence. The range dependence of
the medium in shallow-water environment can
be described in two ways. One is the horizontal
variations of sound speed profiles and the other
is the horizontal variations of the boundary
conditions in terms of the depth variations as
well as the underlying sediment gdistributions.
The aforementioned conditions of range depen-
dence do not always exist in the most shallow-
water environment, however, seasonal changes
in the water mass characteristics can be expected
in some local area, where tides and cold winds
mix the vertical column of shallower water
more rapidly than the deeper water to produce
changes in the horizontal sound velocity profiles.
Moreover when these changes occur over the
sloping bottom of horizontally varying sediment
compositions, the range dependent effects on
the sound propagation will be dominant,

The types of methods for modeling sound
propagation in a range dependent medium are
the same as for a horizontally invariant medium
and may be classified as ray theoretical or wave
theoretical(1). The ray theory approach to the
description of sound propagation is based on a
WKB(1.2.3) asymptotic solution of the acoustic
wave equation, and is valid only in the limit of
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high frequencies. The wave theory approach
to the modeling of sound propagation in a range
dependent medium is an exact treatment of the
problem in formulation and valid for all fre-
quencies. Most applications of wave theory,
however, are to low frequency sound propaga-
tion because the numerical sampling of the
medium, which is wavelength dependent, be-
comes so fine at high frequencies that a numeri-
cal solution is not practical. There are three
wave theoretical methods for description of
sound propagation. One is a full three-dimen-
sional numerical solution of the wave equation.
Another is parabolic equation method, which has
been wide use in the underwater acoustics
modeling. The final one is the coupled mode
theory. The later two methods have been
applied to acoustic wave propagation. In the
parabolic equation method(4,5), the Helmholtz
equation for the acoustic field is approximated
by a differential equation which is parabolic
in form, and the feild so obtained is not valid
at ranges near the source and also suffers from
some serious disadvantages concerning the
description of the bottom.

The coupled mode theory was proposed
for use in underwater acoustic propagation ap-
plications by Pierce(6) and Milder(7). It was
shown that one may still employ mode theory
in an approximate fashion by performing an
“adiabatic” separation of the depth and range
coordinates in the wave equation. Within the
adiabatic approximation, which is expected to
be valid for weakly range dependent media,
the mode-mode coupling effects are ignored
(8, 9). Most applications of the theory Lave
involved the range dependent propagation media
that includes the range dependence of the water-
sediment interface(10), the wedge-shaped iso-
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velocity ocean(8) and the sloping bottom with
sediment attenuation effects(11). Especially
the study of slope propagation dependence on
several bottom type(l1) based on the adiabatic
normal mode model reveals several factors that
are the basic mechanisms of- acoustic slope
progagation. They are spreading loss, renormali-
zation loss, bottom attenuation and differential
mode excitation,

As stated, in some local area like shallow
water environment around the Korea strait,
winter time mixing of whole water colum reveals
almost horizontal dependent sound velocity
profiles over the sloping bottom of different
sediment compositions across the strait(See
Table 1),

Therefore, the purpose this paper is to cal-
culate the acoustic propagation loss across the
strait where the range dependent characteristics
Also the basic machanisms of the
acoustic propagation based on the adiabtatic

are unique,
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normal mode model will be discussed to show
that the applicability of the coupled mode
theory approach to this particular shallow
environment, In section 2, a brife description
of the environment is given to emphasize the
unique characteristics of the locality. Also a
possible separation of varjiables of the wave
equation is discussed. In following section the
adiabatic normal mode model and the methods
of the numerical calculations is introduced based
on the model called ADIAB that was developed
by the Applied Research Laboratories, the
University of Texas at Austin. Numerical results
and the discussion will be followed.

II. RANGE-DEPENDENT ENVIRONMENT

In the wave equation the range dependent

. «
parameter is the wave number, k=— , where
is the angular frequency and c is the sound

speed that is function of vertical as well as

GEQACOUSTIC PROFILE

. RANGE (KM) 1¢0.1) 2(94) 3{(15.2) 4(21.5) 5(37.4) §(52.6)

LAYER H | SPEED | ATEN| H SPEED|ATEN | H [ SPEED | ATEN| H SPEED | ATER(H SPEED | ATEN | H SPEED [ATEN

WATER 0| 15130 { 0.0 ‘0 | 15274 (0.0 0| i5274 ) 0.0 0 | 15274 00 0 | 15228 | 00 0| 1538900

30 | 15140 | 0.0 § | 1522800 15 ) 18276 | 0.0 10 1823.0| 00 20 | 15231 { 00 20 | 1538.2 100

10 | 1516.1]|0.0 25 fi523.2 | 00 35115234 | o0 45 | 15281 | 00 30 | 1546,3 0.0

§5 | 15160 |00 40 | 15234 | 0.0 60 | 1523.8| 0.0 90 | 15265 | 00 40 | 1541800

80 | 152¢.) | 0.0 95| 1524.3] 00 110 | 15246 | 00 50 | 15374 |00

60 | 1530.7 |00

90 | 1528.7)00

110 | 15246 /00

180 | 1525.7 /00

SEDIMENT 0| 15200 [ 0.1 55 | 1522.2|01 B0 | 1572.7 | 0.15 95| 15736 015 | Lt0 | 17074 | 05 180 | 1710.310.5

30| 1520.0 ; 0.1 75 15222101 95 1 18729 | 0.15 LIO | #873.0| 0.15 ;120 | 17084 | 0.5 190 | 1710305

SUBSTRATE 50| 1820.0 | 05 75 | 18200)05 95 05 10| 18200 0.5 120 | 18200 | 0.5 190 | 18209 |0.5

H: DEPFTH{m} , SPEED (svs} ATEN : ATTENUATION (0B/kHz)

* nombears in parenthests are the renges in Xm from start of track ai which mode s#1 is applied,

Table 1.

Geoacoustic Profile
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horizontal coordinates. The boundary con-
ditions also give rise to the range dependence
in terms of horizontal variation of the water
depth and the sediment distributions. In the
present model, the water depth changes from
30m to 180m over the horizontal distance
of about 60Km range., The gradual deepening
of the depth up to 37Km changes into a relative-
1y steep slope at the range from 37Km to 52Km
(Table 1).

The sound velocity profile also exhibits very
unique horizontal changes, Over shallower
region they are almost isovelocity media with
stight negative gradient while in the deep region
gradients change sign (even they are weak)
along the depth. The unique distributions of
the velocity profile are mainly due the effects
of shallow water mixing and the advection of
warm water in open sea area. For the sediment
distribution along the path of sound propaga-
tion, almost uniform thickness of soft sediment
layer exists above coarse sand as substrate,
The soft sediment refers to clay in the shallow
area and siit or silty-sand as the water becomes
deeper.

Hl. ADIABATIC NORMAL MODE THEORY
AND NUMERICAL IMPLEMTNATION

Adiabatic normal mode theory is an appro-
ximate form of the coupled mode theory: In
a coupled mode theory of sound propagation
the acoustic field due to a point source in a range
variable medium is expressed as

¥ (z. r)=§ Ra(r) és (2, 1) (3. 1)

In equation (3.1) ¥ is the velocity potential and
satisfies the following partial differential equa-
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tion in cylindrical coordinates,

P +K (2, 0)p=— 478 (r—r,) (3. 2)

Where k (x, r) is the wave number of the medinm,
which can vary with depth and range, and
ry denotes the position of the point source,
The particle velocity and acoustic pressure are
to be continuous across all discontinuities in
the medium. This requirements translates into
the following boundary conditions on ¢ . The
continuity of particle velocity requires that the
normal derivative of ¢, 9y /9n be continuous
across surface of discontinuity. The continuity
of pressure requires the ¢ p be continuous,
where p is the material density of the medium.
The boundary condition requiring continuity
of normal derivative of ¥ gives rise to an addi-
tional source of range dependence whenever
sloping interfaces are present. In practice, the
partial separation of range and depth variables
implied in Eq.(3.1) requires that the normal
derivative boundary conditions be approximated
whenever sloping boundaries are present. This
type of approximation does not affect the adia-

- batic approximation to coupled mode theory

(12).
In Eq.3. 1) the function are normal mode
depth functions that satisfy at each point

[ df‘ +k (2, r) —ka (r) ] $n iz, 1) =0
(3. 3}

throughout the propagation path.

Across any interfaces in the path, pén and
d¢n/dz are required to be continuous. In Eq.

(3.3) the ka (r) are the normal mode eigenvalues
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which depend on range whenever the medium
varies in range. The radial functions R (1} in
Eq.(3.1) satisfy the following set of coupled
differential equations.

¢ 1.4
[ S+1 2+ 0 | Rato)

dzr
- { Aman+Bm“(f_n+ 25 }

(3. 4)

The A~ and B, are refered to as the coupling
coefficients and are given by

Aun0)= {7 0(2) fu 2 1) gt o 1) &2
3. 5)
Ban () = {7 1 0) e (2, 1) 220 g,
3. 6)

In adiabatic approximation to coupled mode
theory, the possibility of the coupling of energy
between normal modes is ignored. This entails
neglecting the coupling terms on the right-
hand side of Eq.(3.4). The radial equation in
the adibatic approximation therefore satisfies
the following differential equation,

& 1 .4d ., B
Sl i R =0 6. 7)

The implementation of adiabatic normal mode
theory to produce a numerical propagation
loss model is accomplished in three basic steps.
First, the medium is partitioned into range
bins and a set of normal modes and eiger.values
for each bin is computed. This process is sche-
matically illustrated in fig.1.
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Fig. 1 Schematic diagram of partitioning of propagation
path into range bins,

The mode calculations are carried out using
NEMESIS(13), which numerically integrates
Eq.(3.3) at the midpoint of the range bin,
assuming locally horizontalinterfaces. The
second stage of the calculations involves the
calculation of mode attenuation coefficients
for each range bin and fitting the eigenvalues
through all the range bin midpoints using a cubic
spline. The computation of the radial functions
is done by using the WKB approximation and is

given by e

Anexp(i | kn () d)

Rn( = e—
Y @. 8)

where A, is a constant that depends on mode
number. The final stage is to calculate the
desired propagation loss between the field
point and a point source. This numerical im-
plementation of adiabatic normal mode theory
can be accomplished by using the model ADIAB
developed by the Applied Research Laboratories,
the University of Texas at Austin(14).
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IV, RESULTS OF CALCULATIONS

As shown in Fig.1, the source is located
at ro wheie the depth of water is the shallowest.
The source depth is chosen, at ro , as 10m,
20m and 30m while the receiver depth is 20m
for 20m source and 10m or 30m for 30m source.
The selection of source/receiver depths are based
on the low frequency sound sources that are
located close to the sea surface. Another reason
for this selection is to see the bottom interac-
tion in shallow water when the sound propagates
bouncing back and forth at the interface,

The bathymetry for the propagation loss
track is shown in Table 1. The gradual increase
in depth of water changes into a relatively sharp
increase within the last two bins. The thickness
of sediment layer decreases slowly from the
value of 20m in shallower bin to 10m in the
deeper wate, However the attenuation values are
increasing toward the deeper wster or along the
downslope propagation path,

The subtrate is assumed to be coarse sand
with sound velocity of 1820m/sec and has high
attenuation value of 0.5 dB/m/KHz over the
entire path.
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Fig. 2 Propagation Ioss versus range for source depth

10 m and receiver depth 30 m.
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Fig. 3 Propagation loss versus range for source depth
20 m and receiver depth 20 m.
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Fig. 4 Propagation loss versus range for source depth
30 m and receiver depth 30 m.

The figures 2,3 and 4 ate the propagation loss
calculations over the track. They are inco-
herent propagation loss obtained by summing
the normal modes without regard to phase, The
frequency of gound source used for the calcula-
tions is selected as 100Hz,

The basic mechanisms involved in acoustic
propagation in a horizontally stratified medium
are: spreading 10ss, attenuation loss due to
bottom interaction effects, and intermode
phasing effects. For a range variable bathymetry,
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an additional mechanism must be considered.
This mechanism has been called the megaphone
and inverse megaphone effect and is ralated to
the changing acoustic energy density that ac-
companise bathymetry changes. In present
case of downslope propagation this mechanism
will act to produce additional loss and it has
been called as renormalization loss (14). There-
fore four defferent mechanisms are appeared
to be involved in the results of calculations in
the figures,

To illustrate these mechanisms independent-
ly from the each case consider Fig.2. Figure 2
shows the incoherent loss versus range for the
30mreceiver and the 10m source depths, The
stairstepped curve in Fig.2 is resuited from the
calculations such that a new range bin is entered
and the mode functions change abruptly from
those in the previous bin, In the shallow water
regions only 4 discrete modes were possible,
This number increased siowly bin by bin until,
in the deep water, 13 mode were possible. In
summing the normal modes to obrain the pro-
pagation loss the number of terms in the mode
summations stays the same number correspond-
ing to the shallow bin. Therefore whenever the
mode number increases abrupthy a jump in the
curve can be expected. To explain the loss in
terms of the basic mechanism, first look at the
spreading loss by taking the values at 20 and
40Km range. The spreading loss(SL) between
the two ranges of 20 and 40Km is given by

SL=10]og( } =3.014B

S

The renormalization loss(RL) can be estimated
by assuming that the acoustic energy is effec-
tively confined between the surface and sub-
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strate interfaces. With this assumption the RL
is given by

RL=10log ( %)= 1dB

and the total loss between the two range is given
by

RL+SL.=4dB

This result appears to be far less than the dif-
ference of about 7dB between ftwo ranges,
However, the attenuation effects and the mode
sum effects should be considered to explain
the difference. Since no attenuation is assumed
in the water layer the sediment attenuation
will be the dominant factor. The attenuation
coefficient for the 40Km range is much greater
than the 20Km range. Another important factor
that must be considered to explain the dif-
ference in the propagation loss is the velocity
profile at each range bin. For shallow source
rays propagate downward and likely to have
bottom interactions that causes loss due to
sediment attenuation. From figures 3 and
4 it is shown that shallower source and receiver
pair (Fig.3) produce less loss compared to the
deeper source and receiver pair (Fig.4).

In the figures showing the propagation loss
versus range a big jump in loss curve occurs at
45Km range and it amounts about 25dB. The
geoacoustic profile (Table 1) shows that 45Km
is the range from which the last deep water
layer starts and also the bathymetry changes
rapidly at that point. The reasons for the big
jump could be explained in terms of mode
summation as well as the changing character
of the mode depth function. The mode number
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increases from 4 at the source to 13 in the last
bin. However only 4 modes have been summed
to produce the loss regardless of the number of
modes possible in the last bin. This limits
the applicability of the adiabatic approximation
in 3 rapidly changing environment, In fact
it was assumed at the beginning that a slowly
changing medium is essential to apply the coupl-
ed mode theory to model the acoustic propaga-
tion in range-dependent media. In order to
cause mode coupling to beé negligible and the
adiabatic approximation to be valid Milder
(7) discussed the conditions of applicability of
the method such that frequency should be less
than 600Hz and the range gradients of the
velocity are less than or equal to 0.3m/sec
over one nautical mile. But the loss is not solely
due to the effects of the mode summation,
it could be due to the mode depth function of
the last bin.

To see how this contributes to the loss consider
figures 5 and 6. Figure 5 depicts the normal
mode depth function of mode 1 in the shallower
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Fig. 5 Shallow water sound speed profile and mode
function for mode number 1.
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region just before the last bin, and figure 6
depicts mode 1 in the last bin of the deep water
region. In the shallow water region, mode 1

+

is a dominant mode because it interacts least
with the bottom. Following mode 1 into the

deep water, one would expect it to remain a
dominant mode since it would have suffered
less attenuation as it propagated through the
shallow water. This, however, does not occur
when the receiver is located at a shallow depth
because mode | is evanescent at shallow depth,
Therefore it does not contribute to the field in
the deep water because of its changed character.
It is not possible to isolate the individual effect
on the propagation loss based on the present
calculations to verify the big loss.

Figure 7 shows the grazing angle of the mode
number possible in the last bin at the sediment
interface. With high attenuation rate compared
to the shallow region, the contribution of low
modes to the field could be minimum. There-
fore all the factors described above result in
a big loss on the curve, at least, in tendency.
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Fig. 6 Deep water sound speed profile and mode func-
tion for mode number 1.
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Fig. 7 Mode number and grazing angle at the sedi-
ment interface.

V. CONCLUSION

Adiabatic normal mode theory has been
implemented to model the low frequency sound
propagation in the range-dependent shallow
water. For the present oceanic model it is very
unique shallow water environment in that four
different range varying parameters are involved,
water sound velocity profile, sediment thick-
ness attenuation coefficients, water depths,
For shallow source and receiver depths the
acoustic propagation involves spreading loss,
aftenuation loss due to bottom interaction
effects, intermode phasing effects, renomrali-
zation loss. At the point of abrupt depth change
a big jump in propagation loss occurs and the
big loss can not be explained by the mechanisms
involved in the propagation. It could be due to
the changing character of the mode depth func-
tions. Since mode function character is strongly
dependent on the sound velocity profile, source-
receiver depths should be also a significant
factor contributing to the sound field.

It has been shown that in the shallow
environment since higher modes are attenuated
due to bottom interaction effects, lower modes

BEERS S 6% 4% 01987)

depth functions and its characteristics are very
important to predict sound propagation for the
adiabatic normal mode calculation method. To
show the mode function effects it would be
necessary to locate the source at deep water
region and move the receiver in the direction of
upslope.
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