Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.10.522

Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition  

Park, Young-Soo (Department of Materials Science & Engineering, Chungnam National University)
Huh, Hoon-Hoe (Department of Materials Science & Engineering, Chungnam National University)
Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.19, no.10, 2009 , pp. 522-526 More about this Journal
Abstract
Graphene has been effectively synthesized on Ni/SiO$_2$/Si substrates with CH$_4$ (1 SCCM) diluted in Ar/H$_2$(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 $^{\circ}C$, although CH$_4$ and Ar/H$_2$ gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm$^{-1}$, respectively. With increase of growth temperature to 900 $^{\circ}C$, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 $^{\circ}C$ on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.
Keywords
graphene; raman; inductively-coupled plasma; chemical vapor deposition;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First and J. A. Stroscio, Science, 317, 219 (2007).   DOI   ScienceOn
2 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009).   DOI   ScienceOn
3 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. U.S.A., 102, 10451 (2005).   DOI   ScienceOn
4 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 438, 197 (2005).   DOI   ScienceOn
5 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Choi and B. H. Hong, Nature, 457, 706 (2009).   DOI   ScienceOn
6 C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghrd and K. Kern, Nano Lett., 7, 3499 (2007).   DOI   ScienceOn
7 C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger and W. A. D. Heer, Appl. Phys. Lett., 92, 011914 (2008).   DOI   ScienceOn
8 J. Kong, A. M. Cassell and H. Dai, Chem Phys. Lett., 292, 567 (1998).   DOI   ScienceOn
9 S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006).   DOI   ScienceOn
10 Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature, 438, 201 (2005).   DOI   ScienceOn
11 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).   DOI   ScienceOn
12 J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos and B. C. Holloway, Carbon, 42, 2867 (2004).   DOI   ScienceOn
13 A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett., 8, 2012 (2008).   DOI   ScienceOn
14 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).   DOI
15 G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 467, 361 (2009).   DOI   ScienceOn