• Title/Summary/Keyword: Strongly coupled

Search Result 231, Processing Time 0.03 seconds

Theoretical Description of All-Optical Switching Phenomena Involving Coupled Gap Solitons

  • Lee, Sangjae
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.403-413
    • /
    • 1996
  • We study the propagation of two pulses with orthogonal linear polarizations in a nonlinear periodic dielectric structure with $X^{(3)}$ nonlinearity. Using an envelope- function approach, we derive the coupled nonlinear Schrodinger equations governing the spatio-temporal evolutions of the two orthogonally polarized modes in a nonlinear periodic structure. We then find their solitary-wave solutions referred to as coupled gap solitons. We show that two orthogonally polarized pulses can co-propagate as a coupled gap soliton through a nonlinear periodic structure while each pulse alone will be strongly reflected due to the Bragg reflection. Based on the results, we present an all-optical switching scheme which has a novel architecture and principle. We also study the stability of coupled gap solitons to find the dragging phenomena in a nonlinear birefringent periodic medium.

  • PDF

Lasing of Coupled Guided Modes in Modified Hollow Hexagonal Semiconductor Cavities

  • Moon, Hee-Jong;Lee, Jin-Woong;Hyun, Kyung-Sook;Jeong, Dae Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.377-381
    • /
    • 2014
  • Coupled guided modes, proposed in various modified hollow hexagonal cavities each attached internally to a hexagon, were demonstrated by investigating the laser oscillations in semiconductor cavities. The mode spacing between two adjacent lasing peaks decreased as the size of the internal hexagon increased, due to the increased round-trip length of the coupled guided modes. The linear dependency of the inverse mode spacing to the calculated round-trip length strongly confirmed the lasing of the coupled guided modes. The proposed modes in common-sized external cavities showed resonance structure that could be adjusted widely by controlling the size of the internal hexagon.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

Strongly-coupled Finite Element Method Approach to Multi-scale Modelingof Polycrystalline Solids (유한요소법을 이용한 다결정 고체의 복합스케일 모델링)

  • Han Tong-Seok;Dawson Paul R.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.531-534
    • /
    • 2006
  • A multi-scale (macro-micro) finite element framework for analysis of polycrystalline solids is suggested. The proposed frame work is strongly-coupled in a sense that the two scale calculation is performed at the same time. The issue of averaging micro-scale material stress and stiffness is addressed and a strategy is proposed. The proposed framework is implemented and applied to two examples having different geometries and loading modes. It is concluded that the proposed multi-scale framework can be used for more detailed and accurate analysis compared with the single-scale finite element analysis.

  • PDF

An Analytical Switching-Dependent Timing Model for Multi-Coupled VLSI Interconnect lines (디커플링 방법을 이용한 RC-Coupled 배선의 해석적 지연시간 예측 모델)

  • Kim, Hyun-Sik;Eo, Yung-Seon;Shim, Jong-In
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.439-442
    • /
    • 2004
  • Timing delays due to VLSI circuit interconnects strongly depend on neighbor line switching patterns as well as input transition time. Considering both the input transition and input switching pattern, a new analytical timing delay model is developed by using the decoupling technique of transfer multi-coupled lines into an effective single line. The analytical timing delay model can determine the timing delay of multi-coupled lines accurately as well as rapidly. It is verified by using DSM-Technology ($0.1{\mu}m$ /low-k copper-based process) that the model has excellent agreement with the results of SPICE simulation.

  • PDF

A Study on the 3-D Unsteady State Heat Transfer Coupled by Conductive Currents (전기장 변화에 따른 3차원 비정상 상태 열전달 연계 해석에 관한 연구)

  • Kwac, L.K.;Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • A modeling technique for the 2-way coupling of heat transfer and conduction currents has been performed to inspire a combined analytical simulation. The 3-D finite element method is used to solve steady conduction currents and heat generation in an aluminum film deposited on a silicon substrate. The model investigates the temperature in the device after the current is applied. The conservation equation of energy, the Maxwell equations for conduction currents, the unsteady state heat transfer equation and the Fourier's law for heat transfer are implemented as a bidirectionally coupled problem. It is found that the strongly coupled temperature and time dependent heat equations give a reasonable results and an explicit solving technique.

Optimal Design of Local Induction Heating Coils Based on the Sampling-Based Sensitivity (샘플링 기반 민감도를 이용한 국부 유도 가열용 코일의 최적 설계)

  • Choi, Nak-Sun;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • This paper proposes a sampling-based sensitivity method for dealing with electromagnetic coupled design problems effectively. The black-box modeling technique is basically applied to obtain an optimum regardless of how strong the electromagnetic, thermal and structural analyses are coupled with each other. To achieve this, Kriging surrogate models are produced in a hyper-cubic local window with the center of a current design point. Then design sensitivity values are extracted from the differentiation of basis functions which consist of the models. The proposed method falls under a hybrid optimization method which takes advantages of the sampling-based and the sensitivity-based methods. Owing to the aforementioned feature, the method can be applied even to electromagnetic problems of which the material properties are strongly coupled with thermal or structural outputs. To examine the accuracy and validity of the proposed method, a strongly nonlinear mathematical example and a coil design problem for local induction heating are tested.

High rate dry etching of Si in fluorine-based inductively coupled plasmas

  • Cho, Hyun;Pearton, S.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.220-225
    • /
    • 2004
  • Four different Fluorine-based gases ($SF_6/,NF_3, PF_5,\; and \; BF_3$) were examined for high rate Inductively Coupled Plasma etching of Si. Etch rates up to ~8$\mu\textrm{m}$/min were achieved with pure $SF_6$ discharges at high source power (1500 W) and pressure (35 mTorr). A direct comparison of the four feedstock gases under the same plasma conditions showed the Si etch rate to increase in the order $BF_3$ < $NF_3$< $PF_5$ < $SF_6$. This is in good correlation with the average bond energies of the gases, except for $NF_3$, which is the least strongly bound. Optical emission spectroscopy showed that the ICP source efficiently dissociated $NF_3$, but the etched Si surface morphologies were significantly worse with this gas than with the other 3 gases.

A coupled vibration model of double-rod in cross flow for grid-to-rod fretting wear analysis

  • H. Huang;T. Liu;P. Li;Y.R. Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1407-1424
    • /
    • 2024
  • In Pressurized Water Reactors, most of the failed fuel rods are often observed at the periphery of the fuel assembly, especially near the core baffle. The rod vibration-induced fretting wear is a significant failure mechanism strongly correlated with the coolant and support conditions. This paper presents a coupled vibration model of double-rod to predict the grid-to-rod fretting (GTRF) wear. A motion-dependent fluid force model is used to simulate the coolant cross flow, the gap constraints with asymmetric stiffness between spring and dimple on the vibration form, and the fretting wear are discussed. The results show the effect of the coupled vibration on the deterioration of wear, providing a sound theoretical explanation of some failure phenomena observed in the previous experiment. Exploratively, we analyze the impact of the baffle jet on the GTRF wear, which indicates that the high-velocity cross-flow will significantly affect the vibration forms while sharply changing the wear behavior.