• 제목/요약/키워드: Stress-strength reliability theory

검색결과 27건 처리시간 0.023초

신뢰성 이론을 이용한 고강도콘크리트 구조물의 축력-모멘트관계에 있어서의 해석방법에 대한 평가 (The Estimation of Analytical Method for Axial Force-Moment Relationships of High-Strength Concrete Structures using Reliability Theory)

  • 최광진;장일영;송재호;홍원기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.447-454
    • /
    • 1998
  • The main object of the study is that axial force-moment relationships for high strength concrete structures using reliability theory(Linear statstical method, Monte Carlo Simulation) including probability conception. And mean stress factors and centroid factors proposed to high strength concrete structures using reliability theory(Linear statstical method, Monte Carlo Simulation). Finally, The established experimental data for axial force-moment relationships are compared to the analytical data(data for Linear statstical method and Monte Carlo Simulation) for axial force-moment relationships in this analytical method.

  • PDF

신뢰성이론을 이용한 고강도콘크리트 구조물의 축력-모멘트관계에 관한 해석적인 연구 (The Analytical Study of Axial Force-Moment Relationships for High Strength Concrete Structures using Reliability Theory)

  • 최광진;홍원기;장일영;송재호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.500-506
    • /
    • 1997
  • The main object of the study is that axial force-moment relationships for high strength concrete structures using reliability theory probability conception. And mean stress factors and centroid factors proposed to high strength concrete structures using reliability theory. Finally, the established experimental data for axial force-moment relationships are compared to the analytical data for the axial force-moment relationships in this analytical method.

  • PDF

Bayesian reliability estimation of bivariate Marshal-Olkin exponential stress-strength model

  • Chandra, N.;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • 제13권1호
    • /
    • pp.37-47
    • /
    • 2012
  • In this article we attempted reliability analysis of a component under the stress-strength pattern with both classical as well as Bayesian techniques. The main focus is made to develop the theory for dealing the reliability problems in various circumstances for bivariate environmental set up in context of Bayesian paradigm. A stress-strength based model describes the life of a component which has strength (Y) and is subjected to stress(X). We develop the Bayes and moment estimators of reliability of a component for each of the three possible conditions, under the assumption that the two stresses (i.e. $X_1$ and $X_2$) on a component are dependent and follow a Bivariate exponential (BVE) of Marshall-Olkin distribution, the strength of a component (Y) following exponential distribution is independent of the stresses. The simulation study is performed with Markov Chain Monte Carlo technique via Gibbs sampler to obtain the estimates of Bayes estimators of reliability, are compared with moment estimators of reliabilities on the basis of absolute biases.

  • PDF

Reliability analysis on fatigue Strength for Certification of Aircraft Composite Structures

  • Choi, Cheong Ho;Lee, Doo Jin;Jo, Jae Hyun;Bae, Sung Hwan;Lee, Myung Jik;Lee, Jong Ho
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.16-25
    • /
    • 2021
  • Reliability of fatigue strength on Aircraft Composites(GFRP) Structures was assessed in this paper. Fatigue strength of GFRP was used through the existing fatigue test data with Monte Carlo method. The Sa-Nf curve of composites fatigue strength was assumed as normal distribution and reliability was analyzed using SSIT model. Fatigue stress was designed IAW ASTM F3114-15 with special safety factor of Ssf=1.2~2.0. Reliability was calculated by analytic method and FORM. Sensitivity for the effect of mean and standard deviation of fatigue strength as well as fatigue stability was evaluated. This result can be usefully applied to reliability and fatigue design for composite structures of light weight aircraft.

감마분포를 따르는 재료강도의 신뢰도 예측과 응용 (Estimation and Application of Reliability Values for Strength of Material Following Gamma Distribution)

  • 박성호;김재훈
    • 대한기계학회논문집A
    • /
    • 제36권2호
    • /
    • pp.223-230
    • /
    • 2012
  • 취성이 큰 재료의 강도는 일반적으로 정규분포 또는 와이블분포로 설명되어 왔으나 감마분포도적합할 수 있다. 재료의 파손이 가해진 응력의 연속된 값 중 가장 큰 값에 좌우된다면 극치분포를 적용하는 것이 합당하다. 본 논문에서는 재료강도가 감마분포를 따르며 극치분포하는 응력이 작용할 경우 응력-강도 간섭이론에 기반하여 신뢰도 계산식을 제시하였으며, 확률분포 파라미터별 신뢰도와 안전율 및 변동계수와의 관계를 통하여 신뢰도 계산식의 유효성을 입증하였다. 안전율과 변동계수에 기반한 신뢰도 예측방법으로 목표 신뢰도가 설정되었을 때 최소한 요구되는 안전율과 최대로 허용되는 응력의 변동계수를 예측할 수 있다.

On the Conditional Tolerance Probability in Time Series Models

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • 제26권3호
    • /
    • pp.407-416
    • /
    • 1997
  • Suppose that { $X_{i}$ } is a stationary AR(1) process and { $Y_{j}$ } is an ARX process with { $X_{i}$ } as exogeneous variables. Let $Y_{j}$ $^{*}$ be the stochastic process which is the sum of $Y_{j}$ and a nonstochastic trend. In this paper we consider the problem of estimating the conditional probability that $Y_{{n+1}}$$^{*}$ is bigger than $X_{{n+1}}$, given $X_{1}$, $Y_{1}$$^{*}$,..., $X_{n}$ , $Y_{n}$ $^{*}$. As an estimator for the tolerance probability, an Mann-Whitney statistic based on least squares residuars is suggested. It is shown that the deviations between the estimator and true probability are stochatically bounded with $n^{{-1}$2}/ order. The result may be applied to the stress-strength reliability theory when the stress and strength variables violate the classical iid assumption.umption.n.

  • PDF

신뢰성 이론을 이용한 500kgf/$\textrm{cm}^2$의 고강도콘크리트 구조물에 대한 휨변형의 해석적 연구 (An Analytical Study of the Flexural Deformation for High Strength Concrete Structures using Reliability Theory)

  • 송재호;최광진;김민웅;홍원기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.231-236
    • /
    • 1995
  • The object of this thesis is an analytical study on flexural deformation of high strength concrete structures using reliability theory. Using the established experimental data that have been presented in various documents the stress-strain relationship curves of high strength(500kgf/$\textrm{cm}^2$)models are proposed. Based on both methods of logarithm regression analysis and multiple regression analysis adopted in order to establish the relationships between design parameters, response random variables and flexural deformation analyzed using Monte Carlo simulation and Simpson composite formula. Additional random variables are introduced to incorporate both the confidence in the analytical accuracy of engineering mechanics associated with structural response quantities and the uncertainty in the construction quality control. The result is expected to accomodate other important design parameter of high strength concrete design in treating reliability theory that practicing engineers, structural engineering often face.

  • PDF

변동하중을 받는 기계요소의 정 .동적 허용안전계수를 고려한 신뢰성 (Reliability of Machine Elements Based on Static and Dynamic Factor of Allowable Safety under Fluctuating Load)

  • 양성모;김강희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.475-480
    • /
    • 1997
  • It is common to assum identical allowable safety factors in static strength, defined by mean stress and in fatigue, defined by stress amplitude. Under the load with asymmetrical cycles the safety factor is not the same. In this paper, with the consideration of unequal allowable safety factors a general method for estimating fatigue reliability of a machine element under a combined state of stress is derived based on the theory proposed by Prof. Kececioglu and normal distribution. The calculation of fatigue reliability for limited life is discussed with example.

  • PDF

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.