• Title/Summary/Keyword: Stress intensity factor (SIF)

Search Result 79, Processing Time 0.023 seconds

Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF (일체형 보강판의 균열성장거동(I)-SIF의 수치해석)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF

Analysis of Fatigue Life and Fracture Toughness Using Probabilistic Finite Element Method (확률 유한요소해석법을 이용한 피로수명 및 강도해석)

  • 이현우;오세종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1448-1454
    • /
    • 1994
  • Data which gathered and used in the field of fatigue and fracture mechanics have a lot of uncertainties. In this case, those uncertainties will make scatter band in evaluation of fatigue life and fracture toughness. Thus, the probabilistic analysis of these data will be needed. For determining the fatigue life in mixed mode, using crack direction law and fatigue crack growth law, the problem is studied as a constrained life minimization. Stress intensity factor(SIF) is computed by approximate solution table(Ewalds/Wanhill 1984) and 0th order PFEM. The variance of fatigue life and SIF are computed by differentiation of tabulated approximate solution and 1st order PFEM. And these are used for criterion of design values, principal parameter determination and modelling. The problem of center cracked plate is solved for checking the PFEM model which is influenced by various parameters like as initial crack length, final crack length, two fatigue parameters in Paris Equation and applied stress.

Analysis of Crack Behavior of Brazed Interface in Dissimilar Materials using BEM (이종재 브레이징 계면에서의 균열거동 해석)

  • 오환섭;김시현;김성재;양인수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.91-97
    • /
    • 2002
  • Applications of brazing in the studying fields such as high-speed machining are very increasing in various industry fields. Therefore, applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem dissimilar materials in brazed interface. In this study, stress intensity factor(SIF) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a hardmetal and a HSS by two dimensional(2-D) BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine SIF.

An efficient adaptive finite element method based on EBE-PCG iterative solver for LEFM analysis

  • Hearunyakij, Manat;Phongthanapanich, Sutthisak
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.353-361
    • /
    • 2022
  • Linear Elastic Fracture Mechanics (LEFM) has been developed by applying stress analysis to determine the stress intensity factor (SIF, K). The finite element method (FEM) is widely used as a standard tool for evaluating the SIF for various crack configurations. The prediction accuracy can be achieved by applying an adaptive Delaunay triangulation combined with a FEM. The solution can be solved using either direct or iterative solvers. This work adopts the element-by-element preconditioned conjugate gradient (EBE-PCG) iterative solver into an adaptive FEM to solve the solution to heal problem size constraints that exist when direct solution techniques are applied. It can avoid the formation of a global stiffness matrix of a finite element model. Several numerical experiments reveal that the present method is simple, fast, and efficient compared to conventional sparse direct solvers. The optimum convergence criterion for two-dimensional LEFM analysis is studied. In this paper, four sample problems of a two-edge cracked plate, a center cracked plate, a single-edge cracked plate, and a compact tension specimen is used to evaluate the accuracy of the prediction of the SIF values. Finally, the efficiency of the present iterative solver is summarized by comparing the computational time for all cases.

A Study on the Effect of Micro Defect on Stress Intensity Factor of Through-Crack by Boundary Element Method (경계요소법을 이용한 관통균열의 응력확대계수에 미치는 미소결함의 영향에 관한 연구)

  • Seong, Gi-Deuk;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.560-566
    • /
    • 2000
  • Many researchers have dealt with the problems of fracture mechanics. Generally, these researches are concerned with crack in isotropic material without other micro defects. Actual structure, however, may contain micro defects as well as crack in manufacture processing or operation. If it contains mi defects near a crack, some different characteristics will be appear in fracture behaviors of the crack. This study examines the effect of the micro defect on stress intensity factor of center slant crack rectangular plate subjected to uniform uniaxial tensile stress. In this study, boundary element method(BEM) is used for analysis in stress intensity factor(SIF).

SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.623-632
    • /
    • 2018
  • In [7, 8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. Their algorithm involves an iteration and the iteration number depends on the acuracy of stress intensity factors, which is usually obtained by extraction formula which use the finite element solutions computed by standard Finite Element Method. In this paper we investigate the dependence of the iteration number on the convergence of stress intensity factors and give a way to reduce the iteration number, together with some numerical experiments.

Fracture analysis and remaining life prediction of aluminium alloy 2014A plate panels with concentric stiffeners under fatigue loading

  • Murthy, A. Ramachandra;Mathew, Rakhi Sara;Palani, G.S.;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.681-702
    • /
    • 2015
  • Fracture analysis and remaining life prediction has been carried out for aluminium alloy (Al 2014A) plate panels with concentric stiffener by varying sizes and positions under fatigue loading. Tension coupon tests and compact tension tests on 2014A have been carried out to evaluate mechanical properties and crack growth constants. Domain integral technique has been used to compute the Stress intensity factor (SIF) for various cases. Generalized empirical expressions for SIF have been derived for various positions of stiffener and size. From the study, it can be concluded that the remaining life for stiffened panel for particular size and position can be estimated by knowing the remaining life of corresponding unstiffened panel.

Delamination of a composite laminated under monotonic loading

  • Achache, Habib;Benzerdjeb, Abdelouahab;Mehidi, Abdelkader;Boutabout, Benali;Ouinas, Djamel
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.597-605
    • /
    • 2017
  • Our work aims to analyze using the finite element method the evolution of the stress intensity factor (SIF) parameter K of three laminated folded plates stacks [$+{\alpha}$, $-{\alpha}$], made of the same epoxy matrix and different reinforcement fibers (boron, graphite and glass). Our results show that the angle of orientation of the boron/epoxy composite has no great influence on the variation of the parameter KI. Compared to composite graphite/epoxy and glass/epoxy, the laminated composite boron/epoxy reduces more the SIF KI in the middle of the plate for angles $0^{\circ}{\leq}{\alpha}{\leq}30^{\circ}$.

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.