• Title/Summary/Keyword: Stress and Strain Analysis

Search Result 2,261, Processing Time 0.024 seconds

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

True Stress-True Strain Curves Obtained by Simulating Tensile Tests Using Finite Element Program (인장시험을 유한요소해석 시뮬레이션하여 진응력-진변형도 곡선을 결정하는 방법)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the tensile test necking occurs at the maximum load point and non-uniform stress state is generated in this section. The equivalent stress becomes quite different from the axial stress as necking proceeds. Methods for obtaining the true stress-true strain curves, by overcoming difficulties due to the necking phenomena, have been developed by many authors. One of the methods based on the finite element analysis simulation is a very promising method. In this paper, general-purpose finite element program is used to simulate the tensile test. A round specimen and a flat specimen prepared from the same steel block are tested and simulated. The true stress-true strain curves are determined without assuming that the material follows Hollomon's law.

Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area (인천 지역 준설토의 비선형 압밀특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

A Dynamic Analysis of Valve Mechanism of High-Speed Engine Using FEM (유한요소법을 이요한 고속엔진 밸브 메카니즘의 동적해석)

  • 임상준;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.513-516
    • /
    • 2000
  • This paper presents the analytical studies on the stress and strain of driven valve system of internal combustion engines. The stress and strain is predict using FEM. The particular interest is the dynamic strain at a specific point of the valve and valve seat. Cam and follower Assuming that one rigid surface. This study forced the effects changing Young's modulus and density of valve and valve seat contact area. It supports that the indirect method using FEM is reliable for prediction the actual displacement, stress and strain in the valve system.

  • PDF

A Experimental Study of Stress-Strain Relation of Normal Concrete (보통 콘크리트의 응력-변형관계에 대한 실험적 연구)

  • 김화중;안상건;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.87-92
    • /
    • 1991
  • It was achieved to formulate numerically the stress-strain relationship of concrete, which is a fundamemtal factor for the Elasto-Plastic analysis of concrete structures, for normal concrete by using random statistics. As a result of experiment, in the shape of stress-strain curves of normal concrete it has approach linear from first loading to peak point, and after that point deformation increased radically and specimens were brokendown abruptly. From the multiple linear regression, and obtained the exponential equaion for stress-strain relationship of concrete as follows: $\sigma$/$\sigma$max=e(1-$\varepsilon$/$\varepsilon$max)$\varepsilon$/$\varepsilon$max

  • PDF

A study of life predictions on very high temperture thermal stress (고온분위기에서 열응력을 받는 부재의 수명예측에 관한 연구)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.117-125
    • /
    • 1998
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. The volume free energy associated with Helmholtz free energy includes strain energies caused by applied stress and dislocations piled up in interface(DPI). The energy due to DPI is found by modifying the result of Dundurs and Mura[4]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(r) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius $r^*$ and incubation time $t^*$ to maximise Helmholtz free energy is found in present analysis. Also, kinetics of cavity formation are investigated using the results obtained by Riede [7]. The incubation time is defined in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that 1) strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius $r^*$ decreases or holds constant with increase of the time until the kinetic condition(eq. 2.3) is satisfied. there for the cavity may not grow right after it is formed, as postulated by Harris [15], and Ishida and Mclean [16], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f)and particle size on the incubation time are estimated using material constants of the copper as matrix.

  • PDF

Study on Fracture Life Under Mutual Interaction of Creep and Fatigue (크리프-피로상호작용하의 파단수명에 관한 연구)

  • Cho, Yong-Ee;Kim, Hei-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-106
    • /
    • 1993
  • This is the study on fracture life under the interaction of creep and fatigue. It is difficult to explain the interaction of the creep and fatigue with indication of frequency but the dependency of the time should be considered. The formulation of material varieties causing by interaction of creep and fatigue is required in the accumulative damage method. The strain range partition method requires some of modification corresponding to the changes in temperature and load. All of other method also comprehended with above mentioned problems. Generally, in this field, the variety of stress-strain and suitable parameter is required and connective study between the macro and micro results seems to be insufficient. The linear damage rule is acquiring the support generally but it requires modification in the hgigh temperature instruments. The variety of stress effecting on crack and variety of stress on the metallurgical side are considered to be problems in the future days.

  • PDF

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate

  • Moon, Wonjoo;Seo, Songwon;Lim, Jaeyoung;Min, Oakkey
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1412-1419
    • /
    • 2002
  • Dynamic shear tests for the tough-pitch copper at high strain and high strain rate was performed. The Split Hopkinson Pressure Bar (SHPB) compression test system was modified to yield a shear deformation in the specimen. Hat-shaped specimens for the tough-pitch copper were adopted to generate high strain of γ=3~4 and high strain-rate of γ= 10$^4$/s. The dynamic analysis by ABAQUS 5.5/EXPLICIT code verified that shear zone can be localized in hat-shaped specimens. A proper impact velocity and the axial length of the shear localization region wert determined through the elastic wave analysis. The displacement in a hat-shaped specimen is limited by a spacer ring which was installed between the specimen and the incident bar. The shear bands were obtained by measuring the direction of shear deformation and the width of deformed grain in the shear zone. The decrease of specimen length has been measured on the optical displacement transducer. Dynamic shear stress-strain relations in the tough-pitch copper were obtained at two strain-rates.

Showing Morphological Evolution of the Strain Response Envelope of Clay with Fourier Descriptor Analysis (퓨리에 기술자를 이용한 점성토의 변형률 응답 곡선의 형상 변이 분석)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • This paper introduces a novel method to quantify the morphological evolution of the strain response envelope. The strain response envelope is defined as an image in strain increment space corresponding to the unit stress input in stress space. Based on the shape of strain response envelopes, the deformation characteristics of soils can be described using the framework of elastic-plastic theory. Fourier descriptor analysis was used to investigate the morphological characteristics of strain response envelopes. The numerical results show that when the stress input remains in the initial yield surface the Fourier descriptors remain constant. Once the stress input crosses the initial yield surface, every descriptors deals in this study change. Numerical and experimental results of this study show that clear yielding response is only found in natural block samples. Among the Fourier descriptors, the descriptor called as asymmetry is the best for detecting the yield and is minimally sensitive to the number of input stress paths.