DOI QR코드

DOI QR Code

True Stress-True Strain Curves Obtained by Simulating Tensile Tests Using Finite Element Program

인장시험을 유한요소해석 시뮬레이션하여 진응력-진변형도 곡선을 결정하는 방법

  • Chu, Seok-Jae (Dept. of Mechanical and Automotive Engineering, Univ. of Ulsan)
  • 주석재 (울산대학교 기계자동차공학부)
  • Received : 2010.08.02
  • Accepted : 2010.11.06
  • Published : 2011.01.01

Abstract

In the tensile test necking occurs at the maximum load point and non-uniform stress state is generated in this section. The equivalent stress becomes quite different from the axial stress as necking proceeds. Methods for obtaining the true stress-true strain curves, by overcoming difficulties due to the necking phenomena, have been developed by many authors. One of the methods based on the finite element analysis simulation is a very promising method. In this paper, general-purpose finite element program is used to simulate the tensile test. A round specimen and a flat specimen prepared from the same steel block are tested and simulated. The true stress-true strain curves are determined without assuming that the material follows Hollomon's law.

인장시험할 때 최대하중점을 넘으며 네킹이 발생하여 단면에 분포하는 응력이 더 이상 균일하지 않다. 네킹이 진행될수록 상당응력은 축방향 응력과 더 달라진다. 이 네킹현상을 극복하고 진응력-진변형도 곡선을 결정하는 방법이 이제까지 많이 연구개발되었다. 그 중에서 유한요소해석 시뮬레이션을 이용하는 방법이 매력적이다. 이 논문에서는 범용상용 프로그램을 사용하여 인장시험을 시뮬레이션하였다. 같은 강괴에서 채취한 봉상시편과 판상시편을 인장시험하고 시뮬레이션하였다. Hollomon 법칙을 가정하지 않고 진응력-진변형도 곡선을 결정하였다.

Keywords

Acknowledgement

Supported by : 울산대학교

References

  1. Zhang, K. S. and Li, Z. H., 1994, "Numerical Analysis of the Stress-Strain Curve And Fracture Initiation For Ductile Material," Engineering Fracture Mechanics, Vol. 49, No. 2, pp. 235-241. https://doi.org/10.1016/0013-7944(94)90006-X
  2. Mirone, G., 2004, "A New Model for the Elastoplastic Characterization and the Stress-Strain Determination on the Necking Section of a Tensile Specimen," International Journal of Solids and Structures, Vol. 41, pp. 3545-3564. https://doi.org/10.1016/j.ijsolstr.2004.02.011
  3. Choung, J. M. and Cho, S. R., 2008, "Study on True Stress Correction from Tensile Tests," Journal of Mechanical Science and Technology, Vol. 22, No. 6, pp. 1039-1051. https://doi.org/10.1007/s12206-008-0302-3
  4. Hyun, H. C., Lee, J. H. and Lee, H., 2008, "Mathematical Expressions for Stress-Strain Curve of Metallic Material," Trans. of the KSME(A), Vol. 32, No. 1, pp. 21-28. https://doi.org/10.3795/KSME-A.2008.32.1.021
  5. Lee, K., Kim, T. and Lee, H., 2009, "Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis," Trans. of the KSME(A), Vol. 33, No. 10, pp. 1054-1064. https://doi.org/10.3795/KSME-A.2009.33.10.1054
  6. Ling, Y., 1996, "Uniaxial True Stress-Strain After Necking," AMP Journal of Technology, Vol. 5, pp. 37-48.
  7. Yang, S. Y. and Tong, W., 2009, "A Finite Element Analysis of a Tapered Flat Sheet Tensile Specimen," Experimental Mechanics, Vol. 49, pp. 317-330. https://doi.org/10.1007/s11340-009-9241-x
  8. Joun, M., Choi, I., Eom, J. and Lee, M., 2007, "Finite Element Analysis of Tensile Testing with Emphasis on Necking," Vol. 41, pp. 63-69. https://doi.org/10.1016/j.commatsci.2007.03.002
  9. Joun, M., Eom, J. and Lee, M., 2008, "A New Method for Acquiring True Stress-Strain Curves Over a Large Range of Strains Using a Tensile Test and Finite Element Method," Vol. 40, pp. 586-593. https://doi.org/10.1016/j.mechmat.2007.11.006
  10. Tao, H., Zhang, N. and Tong, W., 2009, "An Iterative Procedure for Determining Effective Stress-Strain Curves of Sheet Metals," International Journal of Mechanics and Materials in Design, Vol. 5, pp. 13-27. https://doi.org/10.1007/s10999-008-9082-2

Cited by

  1. Finite Element Simulation of Fracture Toughness Test vol.37, pp.4, 2013, https://doi.org/10.3795/KSME-A.2013.37.4.491
  2. A methodology for determining the true stress-strain curve of SA-508 low alloy steel from a tensile test with finite element analysis vol.32, pp.7, 2018, https://doi.org/10.1007/s12206-018-0616-8