• Title/Summary/Keyword: Stress Physiology

Search Result 742, Processing Time 0.023 seconds

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis

  • Chen, Leijie;Yan, Laixing;Zhang, Weiwei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2022
  • Heart failure (HF) has become one of the severe public health problems. The detailed role of mitochondrial function in HF was still unclear. Benzoylaconine (BAC) is a traditional Chinese medicine, but its role in HF still needs to be explored. In this study, oxygen-glucose deprivation and reperfusion (OGD/R) was executed to mimic the injury of H9C2 cells in HF. The viability of H9C2 cells was assessed via MTT assay. OGD/R treatment markedly decreased the viability of H9C2 cells, but BAC treatment evidently increased the viability of OGD/R-treated H9C2 cells. The apoptosis of H9C2 was enhanced by OGD/R treatment but suppressed by BAC treatment. The mitochondrial membrane potential was evaluated via JC-1 assay. BAC improved the mitochondrial function and suppressed oxidative stress in OGD/R-treated H9C2 cells. Moreover, Western blot analysis revealed that the protein expression of p-AMPK and PGC-1α were reduced in OGD/R-treated H9C2 cells, which was reversed by BAC. Rescue assays indicated that AMPK attenuation reversed the BAC-mediated protective effect on OGD/R-treated cardiomyocytes. Moreover, BAC alleviated myocardial injury in vivo. In a word, BAC modulated the mitochondrial function in OGD/R-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. The findings might provide support for the application of BAC in the treatment of HF.

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

A Review of Hyperspectral Imaging Analysis Techniques for Onset Crop Disease Detection, Identification and Classification

  • Awosan Elizabeth Adetutu;Yakubu Fred Bayo;Adekunle Abiodun Emmanuel;Agbo-Adediran Adewale Opeyemi
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which makes it possible to simultaneously evaluate both physiological and morphological parameters. Among the physiological and morphological parameters are classifying healthy and diseased plants, assessing the severity of the disease, differentiating the types of pathogens, and identifying the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. Plant diseases cause significant economic losses in agriculture around the world as the symptoms of diseases usually appear when the plants are infected severely. Early detection, quantification, and identification of plant diseases are crucial for the targeted application of plant protection measures in crop production. Hence, this can be done by possible applications of hyperspectral sensors and platforms on different scales for disease diagnosis. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation, and identification of diseases, estimation of disease severity, and phenotyping of disease resistance of genotypes. This review provides a deeper understanding, of basic principles and implementation of hyperspectral sensors that can measure pathogen-induced changes in plant physiology. Hence, it brings together critically assessed reports and evaluations of researchers who have adopted the use of this application. This review concluded with an overview that hyperspectral sensors, as a non-invasive system of measurement can be adopted in early detection, identification, and possible solutions to farmers as it would empower prior intervention to help moderate against decrease in yield and/or total crop loss.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Screening of Antioxidative, Anti-thrombotic and Anti-atherosclerotic Effects of Moutan Root Bark Extracts (Moutan Root Bark가 항산화활성과 LDL 산화 억제 및 항철소판 응접에 미치는 영향)

  • Ban, Chang-Kye;Lee, Min-Ja;Lee, Hye-Sook;Jung, Hyun-Jung;Kim, Hyuck;Kim, Jai-Eun;Park, Sun-Dong;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • There is currently increased interest in the identification of antioxidant compounds that are pharmacologically potent and have low or no side effects. Plants produce significant amounts of antioxidants to prevent the oxidative stress caused by photons and oxygen, therefore they represent a potential source of new compounds with antioxidant activity. Moutan Root Sark (MRS) has been frequently used as analgesic. antispasmodic, anti-inflammatory and remedies for female diseases. In this study. the antioxidant activity of extract from MRS was studied in vitro methods by measuring the antioxidant activity by TEAC, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$ induced human LDL oxidation and the inhibitory effect on collagen induced platelet aggregation. The MRS extracts were found to have a potent scavenging activity, as well as an inhibitory effect on LDL oxidation and on platelet aggregation. In conclusion, the MRS extracts have anti-oxidative and anti-atherosclerotic effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and atherosclerosis.

Effects of Rhizoma Gastrodiae on Cultured Mouse Spinal Motor Neurons Damaged by Hydrogen Peroxide (Hydrogen Peroxide에 의하여 손상된 배양 척수운동신경세포에 대한 천마의 영향에 관한 연구)

  • Kim Hyung Su;Lee Yang Suk;Lee Whan Bong;Son Il Hong;Lee Jae Kyoo;Son Young Woo;Lee Jung Hun;Lee Kang Chang;Ryu Myeung Hwan;Song Ho Joan;Seong Kang Kyung;Park Seung Taeck;Lee Kap Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.150-153
    • /
    • 2002
  • To elucidate the toxic effect of oxygen free radicals on cultured mouse spinal motor neurons damaged by hydrogen peroxide(H₂O₂)-induced neurotoxicity, we examined the neurotoxicity induced by oxygen radicals by NR assay when cultured spinal motor neurons were grown in the medium containing various concentrations of H₂O₂ for 6 hours. In addition, neuroprotective effects of herb extracts such Rhizoma Gastrodiae(RG), on H₂O₂-induced neurotoxicity in cultured spinal motor neurons were evaluated after cultured spinal motor neurons were preincubated with various concentrations of herb extract, RG for 2 hours before 50uM H₂O₂ for 6 hours. H₂O₂ decreased remarkably cell viability in dose-and time-dependent manner in these cultures, and also herb extract, RG increased cell viability of spinal motor neurons damaged by H₂O₂ in these cultures. From the above results, it is suggested that H₂O₂ was toxic in cultured spinal motor neurons derived from mouse, and RG was effective in blocking the neurotoxicity induced by oxidative stress in these cultures.

The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

  • Cho, Sangbuem;Mbiriri, David Tinotenda;Shim, Kwanseob;Lee, A-Leum;Oh, Seong-Jin;Yang, Jinho;Ryu, Chaehwa;Kim, Young-Hoon;Seo, Kang-Seok;Chae, Jung-Il;Oh, Young Kyoon;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1652-1662
    • /
    • 2014
  • The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a $4{\times}4$ Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at $30^{\circ}C$ and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower acetate:propionate (A/P) ratios than non-additive supplementation. High concentrate diets had significantly lower pH. Interactions between energy and additive were observed (p<0.01) in ammonia nitrogen production. Supplementation of diets with the additive resulted in lower rumen and rectal temperatures, hence the additive showed promise in alleviating undesirable effects of heat stress in cattle.

The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition (동합금 조성에 따른 북방전복 (Haliotis discus hannai)의 생존, 호흡 및 중금속 축적률)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Myeong, Jeong-In;Yang, Sung-Jin
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.353-361
    • /
    • 2014
  • In order to investigate the effects of copper alloy on abalone physiology, we studied survival rate, respiration, excretion rate, and heavy metal accumulation in each organ of adults and spats. The survival rate of spats and adults showed 27-60% and 63-83% respectively, higher survival rate in adults. In particular, 100% of copper panel led to lowest survival rate and there was no sharp distinction according to copper alloy composition. The respiration rate and excretion rate of ammonia nitrogen was $1.81mgO_2/g$ D.W./h and 0.43 mg $NH_4-N/g$ D.W./h respectively at 100% of copper panel. In other words, there was a high significant difference at the level, but no significant difference at other test levels (P < 0.05). The atomic ratio (0: N) hit the lowest at the 100% of copper panel showing 3.79 and no significant differences were seen among other test groups with 6.57-7.18 of a very low range. This means that the species might have undergone nutritional stress. In case of copper accumulation, the 100% copper panel group showed the highest level in hepatopancreas and muscle showing 6.91 mg/kg and 1.60 mg/kg respectively but the rest of groups showed similar levels. Zinc accumulation raised at Cu-Zn alloy panel had high significance showing 18.50 mg/kg and 1.10 mg/kg in hepatopancreas and muscle respectively (P < 0.05). To sum up, a cage net made of 100% pure copper is expected to have a negative effect on abalone in light of survival rate, heavy metal accumulation, and atomic ratio (0: N). Moreover, given that the substratum used for the high adhesive species and nutritious stress that is represented through the atomic ratio need to be considered, the copper alloy net is thought not to be suitable for abalone aquaculture.

Pretreatment of Hyperbaric Oxygenation Increases the Activities of Myocardial Antioxidant Enzymes and Protects the Ischemia-Reperfusion Injury of the Heart (고압산소 전처치의 심근 항산화효소 활성 증가 및 허혈-재관류손상 보호 효과)

  • Oh, Dong-Jin;Kim, Young-Hoon;Kim, Chan-Hyung;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.749-758
    • /
    • 1997
  • Myocardial ischemia-reperfusion injury is known to be mediated by reactive oxygen species. The myocardial cell is equipped with endogenous antioxidant defensive system which can be adaptively stimulated by various oxidative stress. It is postulated that an increased oxygen partial pressure induced by hyperbaric oxygenation impose an oxidative stress on the cells, resulting alterations in the endogenous antioxidant system. In this study we investigated the effect of hyperbaric oxygenation on the activities of myocardial antioxidant enzymes and observed whether the hyperbaric oxygenation could protect the ischemia-reperfusion injury of heart. Rats or rabbits were pretreated with hyperbaric $oxygenation(2{\sim}3\;atm\;O_2/1{\sim}3\;hrs/1{\sim}10\;days)$. The changes in activities of major antioxidant enzymes(superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phasphate dehydrogenase), functional recovery and infarct size were observed in the experimentally induced ischemia-reperfused hearts. In the hearts isolated from rats pretreated with $2\;atm\;O_2/1{\sim}2\;hrs$ for 5 days, the functional recovery after reperfusion(20 min) following global ischemia(25 min) was significantly increased without any observable oxygen toxicity. Lactate dehydrogenase release was also significantly reduced in this hyperbaric oxygenated rat hearts. In in vivo regional ischemia(30 min) model of rabbit hearts, pretreatrment with $2\;atm\;O_2/1\;hr$ for 5 days significantly limited the infarct size. Among the myocardial antioxidant enzymes of rat hearts pretreated with the hyperbaric oxygenation, the activities of catalase, superoxide dismutase and glucose-6-phosphatase dehydrogenase were increased, while those of glutathione peroxidase and reductase were not changed. There were lethal cases in the groups of rats exposed to 3 atm $3\;atm\;O_2/2{\sim}3\;hrs$ for 5 days. A lipid-peroxidation product, rnnlondialdehyde was increased in brains and livers of the rats exposed to$2\;atm\;O_2/2{\sim}3\;hrs/5\;days\;and\;3\;atm\;O_2/1\;hr/5days$. The present results suggest that the pretreatment of hyperbaric oxygenation can protect the post-ischemic rererfused hearts in association with a stimulation of the activities of myocardial antioxidant defensive enzymes, and that the hyperbaric oxygenation of $2\;atm\;O_2/1\;hr$for 5 days would be a safe condition which does not produce any oxygen toxicity.

  • PDF