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Abstract
Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based 
on hyperspectral technologies. Hyperspectral analysis is a new subject that combines optical spectroscopy and image 
analysis methods, which makes it possible to simultaneously evaluate both physiological and morphological parameters. 
Among the physiological and morphological parameters are classifying healthy and diseased plants, assessing the severity 
of the disease, differentiating the types of pathogens, and identifying the symptoms of biotic stresses at early stages, 
including during the incubation period, when the symptoms are not visible to the human eye. Plant diseases cause 
significant economic losses in agriculture around the world as the symptoms of diseases usually appear when the plants 
are infected severely. Early detection, quantification, and identification of plant diseases are crucial for the targeted 
application of plant protection measures in crop production. Hence, this can be done by possible applications of hyperspectral 
sensors and platforms on different scales for disease diagnosis. Further, the main areas of application of hyperspectral 
sensors in the diagnosis of plant diseases are considered, such as detection, differentiation, and identification of diseases, 
estimation of disease severity, and phenotyping of disease resistance of genotypes. This review provides a deeper under-
standing, of basic principles and implementation of hyperspectral sensors that can measure pathogen-induced changes 
in plant physiology. Hence, it brings together critically assessed reports and evaluations of researchers who have adopted 
the use of this application. This review concluded with an overview that hyperspectral sensors, as a non-invasive system 
of measurement can be adopted in early detection, identification, and possible solutions to farmers as it would empower 
prior intervention to help moderate against decrease in yield and/or total crop loss.
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Introduction

Food security has become a global issue affecting the ag-
ricultural revenue of many countries while the rising costs 
of overcoming challenges have driven up the price of staple 

foods (Misman et al. 2022). Agriculture provides endless 
wealth and nutrition to tropical people such as cash crops 
(such as cocoa, coconut, and rubber), fruit trees (such as 
mango, orange, papaya, and garcinia cola), and root crops 
(such as potato, yam, and cassava). These crops have re-
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cently gained popularity in tropical regions and are now one 
of the primary sources of agricultural income, though were 
initially planted for domestic consumption. However, re-
gardless of this contribution to human livelihood, these 
plant crops are faced with a lot of constraints that threaten it 
future existence (Misman et al. 2022). One of these con-
straints includes the high rates of destructive plant disease 
pathogens.  Pests and diseases are important biotic factors 
that cause a loss of over 20% to 40% of agricultural pro-
ductivity, affecting the global economy (Misman et al. 
2022). Crop plant diseases are a naturally occurring phe-
nomenon limiting crop plant growth, development, and re-
production (Agrios 2005). Crop plant diseases are typically 
caused by microbes including viral, bacterial, and fun-
gal-like organisms that hinder the normal growth of plants 
and cause variations in their vital functions (Shurtleff et al. 
2021). The diseases and pathogens causing them are a di-
rect threat to the global economy and food security (Sibiya 
and Sumbwanyambe 2019). A recent assessment docu-
ments how these disease pathogens collectively affect all of 
the components of crop production from overall production 
to physical availability, distribution, economic access, stabil-
ity of production, quality, and nutritive value (Savary et al. 
2012). According to Altieri (2018) disease management 
and control procedures must be carried out effectively to re-
duce output losses and ensure agricultural sustainability, 
underlining the importance of continual crop monitoring 
paired with prompt and accurate disease detection. 
Therefore, to solve these relevant problems, the timely 
monitoring of crop diseases and pests is necessary. Early de-
tection, quantification, and identification of these plant dis-
eases are crucial for the targeted application of plant pro-
tection measures. This must be combined with the preser-
vation of natural ecosystems through the use of environ-
mentally friendly farming methods. Food must keep a high 
nutritious value while still being secure worldwide 
(Carvalho 2006). This can be accomplished by using new 
scientific methodologies for disease diagnosis and crop 
management, as well as applying these new technologies to 
large-scale ecosystem monitoring. Thus, hyperspectral 
imaging can be used to solve a wider class of problems for 
the accurate and timely determination of the physiological 
status of crops. Hyperspectral imaging is a technology use-
ful to detect damages in crops over a large area in less time 

(Avinash et al. 2022). Due to biotic stress, plants showed 
various symptoms like wilting, curling or stunned growth, 
chlorosis, necrosis, etc. (Prabhakar et al. 2011). Biotic 
stress impacts in crop plants can be identified, detected, and 
estimated through hyperspectral remote sensing and their 
spectral signatures (Fitzgerald et al. 2004). Therefore, this 
study aimed to provide an overview of the integrated views 
presented on the biotic stress factors, the phases of stress, 
and respective crop plant responses, hyperspectral imaging 
technologies, and the different approaches for detecting 
crop stress in agriculture and lastly representative results of 
a systematic literature analysis are highlighted by identify-
ing the different approaches that were adopted in stress de-
tection and monitoring. Nonetheless, to enhance agricul-
tural productivity the detection of diseases in plants at an 
early stage is quite significant.

Crop Plant Disease Pathogens

Effects of disease pathogens

For years, the damage caused by these stress factors has 
been controlled by the use of chemicals. But nowadays, in-
terest in the use of chemicals against biotic stress is decreas-
ing as a result of its various limitations such as there is need 
for more than one chemical application, an investment that 
is not affordable by most small-scale farmers (Brading et al. 
2002). Besides, the application of chemicals may have ad-
verse effects on human health and the environment, includ-
ing beneficial organisms (Miedaner et al. 2013).

Among several diseases that affect plants are those that 
have the potential to cause devastating economic, social, 
and ecological losses for instance Podosphaera leucotricha, 
Rastrococcus invadens, Xylella fastidiosa, Ralstonia sol-
anacearum, Erwinia carotovora etc. 

Crop reaction to disease incidence

Crop plants’ reactions to and manifestations of the in-
cidence of pests and diseases are heterogeneous in the field 
Lowe et al. (2017), usually starting in a small region of foli-
age and spreading out to the whole field. The ability to spot 
the disease at an early stage would provide an opportunity 
for early intervention to prevent and control the spread of 
infection before the whole crop is infected or damaged.

Concerning the above, it can be seen that there is a need 
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Table 1. Stress identification of some diseases pathogens infections

S/N
Plant/

pathogen name
Alternative 

names
Host plants Process of infection

References

1 Cercospora 
fragariae

Cercosporal 
leaf spot

Sugar beets, 
beetroot

Spore germination and then causes cell necrosis   and leaf spots Tan et al. 2023

2 Podosphaera   
leucotricha

Apple powdery 
mildew

Apples, 
cucumber, 
radish

Infected bud breaks in springs primary infections begin when 
the   fungus which infected the plant in the previous year 
breaks its dormancy and   resumes its growth

David et al. 2021

3 Rastrococcus 
invadens

Fruit tree 
mealybug

Mango, citrus, 
shea butter

Females and nymphs feed on plant leaves and fruits and 
produce   honeydew that causes sooty mold, leading to yield 
reduction

Azrag et al. 2023

4 Puccinia 
striiformis

Yellow rust Wheat barley Formation of masses of spores between the grain and the glumes Chen et al. 2014

5 Xanthomonas   
axonopodis

Canker lesions Citrus The bacteria that cause citrus canker enter leaves through   
stomata, or wounds caused by weather damage or insects

Shahbaz et al. 
2022

to put in place appropriate measures towards plant pro-
tection in crop production. There are current challenges in 
agriculture faced by plant breeders in plant stress, disease 
identification, and detection because visible indicators de-
pending on the crop size and type are manually observed. 
Hence this manual detection makes monitoring of plant 
health both time-consuming and demanding. This manual 
detection is not reliable as disease-infecting plants are usu-
ally manifested in the middle up to the later stage which 
usually starts from a small region on the foliage. It is of par-
amount importance that the infection should be detected at 
an early stage as this will provide the avenue for early inter-
vention in controlling and preventing the spread of in-
fection before the whole crop stands are completely infected 
or damaged.  Such precision approaches would result in the 
reduction of pesticide and herbicide usage, with subsequent 
beneficial impacts on the environment, ecosystem services, 
grower finances, and the end consumer. In other words, the 
plant production and protection sector should be of keen in-
terest in replacing this manual technique with a more so-
phisticated, automated, and objective approach (Table 1).  

In plant production, disease severity, and incidence usu-
ally hurt crop yield quantity and quality. It is important 
within this context, that a timely and accurate assessment of 
crop disease occurrence and spread should be enabled to 
target plant protection activities. Conventionally, the de-
tection of crop plant diseases monitoring is usually carried 
out by visual monitoring alongside molecular, microscopic, 

microbiological, and serological methods (Bock et al. 2010; 
Martinelli et al. 2015).  However, there is the availability of 
a non-invasive optical sensor that enables the assessment of 
the reflectance of plants in different areas of the electro-
magnetic spectrum. This non-invasive sensor supports 
plant disease identification and detection (Mutka and Bart 
2015; Mahlein 2016) thereby facilitating plant phenotyp-
ing for resistance breeding development.

Hyperspectral Sensor Imaging

There are several non-invasive optical sensors available, 
including RGB, hyperspectral, thermography, chlorophyll 
fluorescence, and multispectral sensors; however, hyper-
spectral sensors are the most in demand. A sophisticated 
imaging method that gathers in-depth spectral data about 
an object or scene is called hyperspectral imaging (HSI). 
The technology captures reflected or emitted light in multi-
ple contiguous spectral bands, usually from the visible to 
the near-infrared regions of the electromagnetic spectrum, 
using a hyperspectral sensor or camera (Rastogi et al. 
2022). A sophisticated imaging technique used to obtain 
and analyze the spectral details of a scene or object is called 
hyperspectral imaging (HSI). Materials and objects that 
are difficult to distinguish with the unaided eye or conven-
tional imaging systems can now be identified and described 
thanks to HSI technology (Jaiswal et al. 2023). The im-
proved spectral data enables more effective object detection, 
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Fig. 1. Illustration of plant disease 
detection and identification by hy-
perspectral imaging (A). The im-
age is of a normal color camera 
(B). Hyperspectral Imaging col-
ored green is classified as normal 
and those colored red are classified 
as diseased using a hyperspectral 
camera (Moghadam et al. 2017).

and classification, and enhanced target identification.  
However, it has several advantages and a significant poten-
tial in plant disease monitoring and host-pathogen inter-
actions (Thomas et al. 2017). Other optical sensors are not 
as effective as hyperspectral sensors in that they can only de-
tect plant stress without specification of the causal agent but 
the hyperspectral sensor can go beyond by identifying the 
pathogen/disease responsible for the infection (Bravo et al. 
2003; Mahlein et al. 2010; Hillnhütter et al. 2012). 

Basic principle of hyperspectral sensors

Hyperspectral imaging (HSI) is a spectroscopic techni-
que that can combine conventional spectroscopy with digi-
tal imaging. It collects images as a function of length and 
provides an individualized reflectance spectrum for each 
pixel in an image. Furthermore, hyperspectral sensors have 
various applications on different scales ranging from labo-
ratory plant tissue investigation, and screening in green-
houses up to open field application in the detection and 
identification of disease infection (Thomas et al. 2017). The 
most important advantage of the application of hyper-
spectral sensor imaging is that it is non-invasive and 
non-destructive hence this enables both the breeder and re-
searchers to conduct their experiment on a series of plant 
sample measurements Berdugo et al. (2014) and thus re-
duction in samples required. Moreover, HSI finds versatile 
applications across various fields, including agriculture, en-
vironmental monitoring, food quality control, geology, and 
more.

Benefits of hyperspectral sensors for plant 
pathology, phenotyping and precision farming

However, in laboratories, plant samples are analyzed 
through metabolic processes with photometrical applica-
tions after specific extraction and isolation procedures 
(Carocho and Ferreira 2013). This technique is destructive 
in that it prevents further investigation of plant samples 
making time series measurement impossible. Hyperspectral 
imaging sensors in a similar way also utilize this principle 
i.e. the absorption features and optical properties of bio-
chemical compounds in assessing the different parameters 
in plants but in a non-invasive way (Berdugo et al. 2013, 
2014). Hyperspectral reflectance interpretation can be best 
achieved during plant–pathogen interactions because at this 
point this interaction influences the plant’s physiology, wa-
ter content, structure, etc. state of the plants. Take for in-
stance; Cercospora leaf spot, rust, and powdery mildew on 
sugar beet through a combination of different spectral veg-
etation indices identified by Mahlein et al. (2010) and in-
fections with an accuracy of over 90% was detected.

In a nutshell, this indicates that hyperspectral imaging 
can detect metabolic changes in plants during a pathogenic 
attack (Arens et al. 2016). Therefore, the identification and 
detection of disease outbreaks are possible through hyper-
spectral imaging on different scales (Thomas et al. 2017) 
(Fig. 1).

As a result of this, timely detection of specific diseases 
and an early application of disease-specific countermeasures 
in precision farming are enabled. Apart from the usage of 
hyperspectral sensors in the identification and detection of 
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plant diseases, it is also used in assessing biotic, abiotic, and 
soil properties. Vigneau et al. (2011), thereby allowing 
farmers to adjust nutrients and water distribution during 
growing seasons. Gerhards et al. (2019) made use of hyper-
spectral remote sensing imaging techniques to detect 
drought and were able to summarize the importance and re-
sponse of plants to water stress. As a result, the response of 
plants to water stress is complex and numerous, then their 
physiological interactions affect the electromagnetic signal 
in different spectral domains. It can also be used in gather-
ing other information for example the differences in soil 
quality to create soil maps (Hbirkou et al. 2012). These 
maps can be used to plan an ideal nutrient composition 
based on the determined soil parameters in different parts 
of the field (Thomas et al. 2017).

De Silva et al. (2023) results highlight the potential of 
hyperspectral imaging for monitoring crop nutrient levels, 
which could assist growers in maximizing orchard pro-
ductivity through timely fertilizer management. The rapid 
assessment of crop nutrition may also help to minimize fer-
tilizer costs and reduce nutrient runoff to the downstream 
environment. For instance, Ding and Ma (2020) used a hy-
perspectral imaging system to obtain hyperspectral images 
of Aronia melanocarpa leaves under a saline-alkali stress 
state to improve yield and quality.

Identification of relevant literature reviewed for 
plant disease detection

Several authors have investigated using hyperspectral 
image analysis in the identification and detection of crop 
plant disease pathogens. In the present study, we aim to 
provide a comparative analysis of the recent research papers 
that have utilized hyperspectral image analysis highlighting 
their contributions to the field and identifying areas for fu-
ture research. For instance; Bravo et al. (2003) made use of 
this spectral image to detect early yellow rust in wheat in an 
open field while Nansen et al. (2009) were able to detect in-
sect-induced stress in wheat plants. Also, Polder et al. 
(2014) combined different optical sensors for the detection 
of tulip-breaking viruses. Furthermore, Qin et al. (2009) 
and Balasundaram et al. (2009) were able to make use of a 
hyperspectral imaging approach in detecting canker lesions 
on citrus fruits.  The use of non-invasive sensors in observ-
ing plants during their growth period provides new insight 

into the interaction of plants with biotic stresses. 
Before hyperspectral imaging is said to be utilized, the 

decision has to be made first on which measurement scale it 
should be based. Usually, the scale of measurements is plant 
leaf, tissue single plant, and/or canopy are in the focus. 
These measurement scales are processed for metabolic 
changes that occur during the plant–pathogen interaction 
(tissue and leaf scale), disease detection (leaf, single plant, 
and canopy scale), disease distribution and distribution pat-
terns (canopy scale) meanwhile, in the laboratory, leaf and 
tissue scale experiment are performed while leaf, single 
plant and canopy measurement scale are required for more 
applications that are practical. The tissue scale allows fungi 
spores observation during early interaction and infection.  
Examination of individual plant–pathogen interaction on a 
tissue scale estimation utilizing hyperspectral imaging em-
powers the characterization of subcellular forms (Simko et 
al. 2017). This sub-cell procedure can be utilized to set up 
later on a connection between phenotyping and physio-
logical investigations of plant diseases (Groβkinsky et al. 
2015; Mahlein 2016) a basic reason for plant resistance 
breeding. 

This arrangement permits small-scale image inves-
tigation and has been utilized for plant disease detection 
and explicit resistance characterization (Kuska et al. 2015; 
Leucker et al. 2016). This can be confirmed by a study con-
ducted by Kuska et al. (2015) which reveals that micro-
scopic hyperspectral studies show an early change in pow-
dery mildew disease before side effects become noticeable 
for the natural eye.

Leucker et al. (2016) performed point-by-point exami-
nations of the pathogenesis of Cercospora leaf spot on sugar 
beet through hyperspectral microscopy. The consequences 
of these estimations could be utilized to assess the spor-
ulation density of the parasite on various host genotypes. 
These discoveries show tissue-scale estimations as an im-
portant instrument to watch and gauge the spread of patho-
genic contagious species over different ages relying upon 
their communication with the host plants. 

Leaf scale measurements such as leaves, stems ears, and 
roots require high-resolution assessment to observe specific 
changes in spectral characteristics of plants during patho-
genesis (Thomas et al. 2017). The experiments conducted 
in the lab are usually done under stable environmental con-
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ditions without any risk of change in environmental factors 
such as the direction of light intensity that might influence 
the results. On leaf scale estimation, reflection and trans-
mission estimations on leaf scale are conceivable in estimat-
ing various leaves with laboratory-based hyperspectral sen-
sor arrangement (Bergsträsser et al. 2015; Kim et al. 2015; 
Thomas et al. 2016). This arrangement is sufficiently ad-
equate to identify changes in the plant’s digestion and 
structure before they are obvious to the natural eye. The 
discovery of Bauriegel et al. (2011) proposes that hyper-
spectral imaging can likewise be utilized to recognize in-
fections on plant parts other than leaves. In their examina-
tion, they discovered that wheat ears, which were inoculated 
with Fusarium head scourge and were explored through hy-
perspectral imaging and fluorescence estimation in a time 
series test were able to determine infected ears within 7 days 
after inoculation through hyperspectral imaging. 

Benhural et al. (2013) adopted hyperspectral imaging to 
measure the various colors of Parinari curatellifolia fruits 
from a different location. The color of the fruits from dif-
ferent sites ranged from green to yellowish to brown with 
shades of grey. Hence the quantitative measurement of the 
color of the fruit was successfully achieved by using the hy-
perspectral package.

Wahabzada et al. (2015) utilized advanced information 
investigation strategies on hyperspectral time-series pic-
tures of datasets of barley plants, which were inoculated 
with powdery mildew, brown rust, and net blotch. After the 
inoculation, it was conceivable to separate the features of the 
three pathogens and to make the course of events based on 
maps for a representation of the three pathogens during the 
pathogenesis on barley plants. These discoveries could be 
associated with pathogen-explicit biological procedures 
during disease infection. Along these lines, it is conceivable 
to get a diagram of the specific infection changes in the 
plant’s metabolism at a given time during the pathogenesis. 

However, a large-scale application is required in the 
field, and greenhouse investigation combines controlled hy-
perspectral experiments. Using current hyperspectral sen-
sors high-throughput in nurseries and fields has been dem-
onstrated to be a promising instrument for considering 
plant–pathogen associations (Thomas et al. 2017). The spa-
tial resolution is adequate to identify biotic and abiotic 
stresses on single plants at an early stage (Vigneau et al. 

2011). Consequently, nursery and field-based method-
ologies permit a quick evaluation of different plants on a 
leaf or canopy scale, which cannot be coordinated in re-
search laboratories.  Moshou et al. (2005) applied a hyper-
spectral sensor to distinguish yellow rust infection in winter 
wheat under field conditions with surrounding light and it 
was conceivable to recognize areas with high disease pres-
sure in the field. In utilizing this sensor, it was possible to 
distinguish and evaluate both pathogens by checking the 
connection between assessed disease severity and pathogen 
pervasion. In addition, hyperspectral imaging can recog-
nize different variables influencing the plant’s well-being.

For instance, Rumpf et al. (2010) in these studies were 
able to detect and differentiate plant diseases at an early 
stage before they were visible to the human eye. Furthermore, 
Mahlein et al. (2012) were also able to detect and identify 
Cercospora leaf spot, sugar beet rust, and powdery mildew 
on sugar beet. These scientists were able to achieve this 
through spatial resolution and throughput. In a nutshell, it 
is very important for hyperspectral investigations, to select a 
sufficient spatial resolution.

Limitations 

However, HSI has particular challenges as a result of the 
demands on data processing and storage. The significant 
amount of data produced by HSI presents challenges for 
processing and storage, which makes using it in certain sit-
uations a laborious undertaking (Ghamisi et al. 2017). 
Moreover, HSI equipment’s relatively high cost may re-
strict its accessibility and limit its availability to particular 
users. The quality and dependability of the recorded data 
can also be impacted by external variables that are sensitive 
to HSI, such as atmospheric conditions, changes in light-
ing, and the distance between the imaging system and the 
object (Geladi et al. 2004). These elements may cause HSI 
data distortions or inaccuracies, which may affect how reli-
able the outcomes appear. However, various technologies 
and approaches can be used to address these issues. 
Furthermore, with more study and development, this meth-
od has the potential to significantly improve the inter-
pretation and analysis of hyperspectral data (Jaiswal et al. 
2023).
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Conclusion   

In the management of crop plants, disease detection is a 
major pursuit both in horticulture and agriculture. Specifically, 
distinguishing an early stage of disease and stress would be 
valuable to farmers as it would empower prior intervention 
to help moderate against decrease in yield and/or total crop 
loss. There has been an outstanding increment in scientific 
writings in recent times concentrating on the detection of 
plant stress by utilizing hyperspectral imaging analysis. 
Hyperspectral imaging is a non-invasive procedure where 
the plants are checked to gather high-resolution information. 
There are different strategies accessible to investigate the 
information to recognize biotic and abiotic stress in plants, 
instances of which have been discussed above, with an at-
tention on the classification of diseased and healthy plants, 
early detection, and the gravity of the stress symptoms.
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