• Title/Summary/Keyword: Strength decrease

Search Result 2,844, Processing Time 0.033 seconds

The Effect of the Self-Healing Microcapsules on the Quality and Healing Properties of Cement Composites (자기치유 마이크로캡슐이 시멘트 복합재료의 품질 및 치유특성에 미치는 영향)

  • Kim, Cheol-Gyu;Oh, Sung-Rok;Kim, Ji-Hun;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.389-396
    • /
    • 2021
  • In this paper, it was evaluated that the effect of self-healing microcapsules on the quality and healing properties of cement composites. In the mixing of microcapsules, the plastic viscosity and yield stress of the cement composites decreased due to the particle properties of the microcapsules, and decreased in proportion to the mixing ratio. The table flow showed a tendency to decrease as the core material acted as a stimulant due to the loss of microcapsules, and the compressive strength could be supplemented through unit quantity correction. As a result of evaluating the effect of microcapsule mixing on the healing properties of cement composites, it was found that the unit water flow rate decreased by the healing reaction immediately after crack initiation. When more than 3% of microcapsules were mixed, it was found that there was a healing rate of more than 95% at 7 days of healing age.

Quality and Long-tern Aged Healing Properties of Self-healing Surface Protection Materials Using Solid Capsules (고상캡슐을 활용한 자기치유 표면보호재의 품질 및 장기재령 치유특성)

  • Oh, Sung-Rok;Nam, Eun-Joon;Kang, Shin-Taeg;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.397-404
    • /
    • 2021
  • In this study, it was reviewed that the effect of solid capsules on the quality of surface repair materials and the healing properties of long-term aging, as part of a study to utilize self-healing surface repair materials using solid capsules as repair materials. As a result of evaluation of the rheological properties of self-healing surface repair materials according to the mixing of solid capsules, plastic viscosity, yield stress, and table flow tended to decrease. In the case of compressive strength, 1MPa per 1% of the solid capsule decreased proportionally. As a result of evaluating the long-term healing properties, when 10% of solid capsules were mixed, a healing rate of 90% was shown at 28 days of healing, because the solid capsule was preserved even after 91 days of age had elapsed. after 91 days of healing, even in the case of 5% of solid capsules, a healing rate of 90% was shown.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Characterization of Foamed Concrete Using Calcium sulfaluminate (칼슘설포알루미네이트를 활용한 기포콘크리트의 특성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • The purposes of this study is to secure subsidence stability and economical efficiency of lightweight foamed concrete. The composition of lightweight foamed concrete was designed for OPC by substituting with constant contents of calcium sulfaluminate and fly ash. It is found that the flow of lightweight foamed concrete decreased with early ettringite formation by CSA. The initial strength increased with the decrease of drying time of lightweight foamed concrete when CSA was substitution to 10%. The settlement deep of foamed concrete improved the settlement stability by replacing CSA, which prevented shortening of the coagulation time and bubble puffing.

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum (재조합 Corynebacterium glutamicum으로부터 헴첼 생산에 미치는 프로모터의 효과)

  • Yang, Hyungmo;Kim, Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

Comparative Study of Mechanical and VOC Properties According to Manufacturing Conditions of Glass Fiber/Bamboo Fiber/PP Composites (유리섬유/대나무섬유/PP 복합재의 제조 조건에 따른 기계적 및 VOC 특성 비교 연구)

  • Lee, Su-kyoung;Park, Tae-sung;An, Seung-kook
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.153-160
    • /
    • 2021
  • In this study, composite materials were prepared by varying the content of glass fiber and bamboo fiber in PP/glass fiber/bamboo fiber. Experiments were conducted to confirm the mechanical properties(tensile, impact and burst strength) and volatile organic compound content of the bamboo fiber composite prepared under these conditions. An improvement in the main properties was observed at a fiber content of 30wt%. When the fiber fraction was increased above 30wt%, the mechanical properties tended to decrease due to the agglomeration of fibers at higher load fractions. In addition, the content of volatile organic compounds increased as the content of bamboo fibers increased, which is thought to be due to the volatile organic compounds generated during the manufacturing process of the composite material being present in the composite material without escaping from the pores of the bamboo fibers and volatilizing at a certain temperature. As a result of confirming the physical properties of the composite, it is considered that the optimal mixing condition is 30wt% of bamboo fiber for the composite produced by varying the amount of bamboo fiber composite. In the future, it is thought that follow-up experiments to confirm and improve the pre-treatment conditions for reducing the content of volatile organic compounds in the manufactured composite material are possible.

Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel (슈퍼 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 열처리 후 냉각속도의 영향)

  • Kwon, Gi-Hyoun;Na, Young-Sang;Yoo, Wee-Do;Lee, Jong-Hoon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.735-743
    • /
    • 2012
  • The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at $1050^{\circ}C$ for 1 hr, followed by controlled cooling. The cooling rates were $175.6{\times}10^{-3}^{\circ}C/s$, $47.8{\times}10^{-3}^{\circ}C/s$, $33.3{\times}10^{-3}^{\circ}C/s$, $16.7{\times}10^{-3}^{\circ}C/s$, $11.7{\times}10^{-3}^{\circ}C/s$, $5.8{\times}10^{-3}^{\circ}C/s$ and $2.8{\times}10^{-3}^{\circ}C/s$, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the ${\sigma}$ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was 26 MPa higher than that of the sample with a cooling rate of $175.6{\times}10^{-3}^{\circ}C/s$. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

A proposal and evaluation of a revised GIN method (수정 GIN 기법의 제안 및 검증)

  • Sagong, Myung;Park, Youngjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.151-165
    • /
    • 2021
  • Grouting, which is applied for the increase of ground strength and the decrease of permeability, is complex process because of several reasons, so the process needs to be elaborated. Injection process in consideration of ground condition and optimization of grouting sequence is essential. In this study, GIN (Grouting Intensity Number), multiple of injected grout volume and pressure, is revised to consider injection pressure reduction and joint opening during grouting process. A revised GIN process is evaluated through a field test. A revised GIN, considering ground condition, injection pressure, follows GIN envelope and produces rational grouting process. The result of a revised GIN reduces permeability of the ground in the order of 10-1~10-2 cm/sec.