Browse > Article
http://dx.doi.org/10.4014/mbl.1901.01016

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum  

Yang, Hyungmo (Department of Biotechnology, The Catholic University of Korea)
Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.3, 2019 , pp. 337-342 More about this Journal
Abstract
We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.
Keywords
Heme; $P_{180}$; $P_{gapA}$; $P_{H36}$; $P_{sod}$; $P_{dnaK}$;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. 2007. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J. Biotechnol. 132: 99-109.   DOI
2 Kim HJ, Kwon YD, Lee SY, Kim P. 2012. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Appl. Microbiol. Biotechnol. 94: 1079-1086.   DOI
3 Schobert M, Jahn D. 2002. Regulation of heme biosynthesis in non-phototrophic bacteria. J. Mol. Microbiol. Biotechnol. 4: 287-294.
4 Verkamp E, Chelm B. 1989. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J. Bacteriol. 171: 4728-4735.   DOI
5 Wang L, Elliott M, Elliott T. 1999. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella Typhimurium. J. Bacteriol. 181: 1211-1219.   DOI
6 Lee MJ, Kim P. 2018. Recombinant protein expression system in Corynebacterium glutamicum and its application. Front. Microbiol. 9: 2523.   DOI
7 Choi S-I, Park J, Kim P. 2017. Heme derived from Corynebacterium glutamicum: A potential iron additive for swine and an electron carrier additive for lactic acid bacterial culture. J. Microbiol. Biotechnol. 27: 500-506.   DOI
8 Lee MJ, Kim HJ, Lee JY, Kwon AS, Jun SY, Kang SH, et al. 2013. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 23: 668-673.   DOI
9 Na YA, Lee JY, Bang WJ, Lee HJ, Choi SI, Kwon SK, et al. 2015. Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J. Ind. Microbiol. Biotechnol. 42: 915-924.   DOI
10 Park S-D, Lee S-N, Park I-H, Choi J-S, Jeong W-K, Kim Y-H, et al. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
11 Lee J-Y, Lee HJ, Seo J, Kim E-S, Lee H-S, Kim P. 2014. Artificial oxidative stress-tolerant Corynebacterium glutamicum. AMB Express. 4: 15.   DOI
12 Pranawidjaja S, Choi S-I, Lay BW, Kim P. 2015. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 25: 880-886.   DOI
13 McNicholas PM, Javor G, Darie S, Gunsalus RP. 1997. Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM and hemA of Escherichia coli. FEMS Microbiol. Lett. 146: 143-148.   DOI
14 Sadrzadeh S, Graf E, Panter SS, Hallaway P, Eaton J. 1984. Hemoglobin. A biologic fenton reagent. J. Biol. Chem. 259: 14354-14356.   DOI
15 Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969.   DOI
16 Toyoda K, Teramoto H, Inui M, Yukawa H. 2008. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol. 81: 291-301.   DOI
17 Zhang J, Kang Z, Chen J, Du G. 2015. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584.   DOI
18 Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J. 2013. Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6: 103-117.   DOI
19 Ehira S, Teramoto H, Inui M, Yukawa H. 2009. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J. Bacteriol. 191: 2964-2972.   DOI
20 Hassett DJ, Woodruff W, Wozniak D, Vasil M, Cohen M, Ohman D. 1993. Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese-and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismutase activity in alginate producing bacteria. J. Bacteriol. 175: 7658-7665.   DOI
21 Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M. 2003. Efficient 40 C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl. Microbiol. Biotechnol. 62: 69-75.   DOI