• Title/Summary/Keyword: Strength Optimization

Search Result 840, Processing Time 0.032 seconds

Shaping of Hormone drug Knowledge and drug market: Athletes use and consumption of synthetic hormones (호르몬 약물 지식과 시장의 형성: 운동선수들의 합성 호르몬 사용과 소비)

  • Han, Gwnag Hee;Kim, Byung Soo
    • Journal of Science and Technology Studies
    • /
    • v.14 no.1
    • /
    • pp.87-116
    • /
    • 2014
  • This article focuses on synthetic hormone consumption that illegal act of heterogeneous forms of pharmaceuticalization. Athletes are not unfamiliar with the use of synthetic hormones that contain anabolic steroids. Synthetic hormones are used to increase muscle mass and strength. This drug use practice cannot simply be viewed as illegal. Athletes accumulate knowledge on these hormones that conflicts with the knowledge proffered by physicians and they consume drugs responsibly. Physicians' knowledge of these hormones is limited to their use in the treatment of abnormalities. Athletes, however, are expanding the role of these hormones to include their potential for enhancement. Thereby, a new value is assigned to synthetic hormones, and an informal market is formed. Previous studies in the fields of biopolitics and biomedicalization have mainly focused on the formal connection between biomedical science and the institutional network. This article, therefore, analyzes the informal and the various aspects of biomedicalization.

  • PDF

Nanotechnology in the Surface Treatment of Titanium Implant. (임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지)

  • Oh, Seung-Han
    • The Journal of the Korean dental association
    • /
    • v.48 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Tissue engineering has been enhanced by advance in biomaterial nature, surface structure and design. In this paper, I report specifically vertically aligned titania ($TiO_2$) nanotube surface structuring for optimization of titanium implants utilizing nanotechnology. The formation, mechanism, characteristics of titania nanotubes are explained and emerging critical role in tissue engineering and regenerative medicine is reviewed. The main focus of this paper is on the unique 3 dimensional tubular shaped nanostructure of titania and its effects on creating epochal impacts on cell behavior. Particularly, I discuss how different cells cultured on titania nanotube are adhered, proliferated, differentiated and showed phenotypic functionality compared to those cultured on flat titanium. As a matter of fact, the presence of titania nanotube surface structuring on titanium for dental applications had an important effect improving the proliferation and mineralization of osteoblasts in vitro, and enhancing the bone bonding strength with rabbit tibia over conventional titanium implants in vivo. The nano-features of titania nanotubular structure are expected to be advantageous in regulating many positive cell and tissue responses for various tissue engineering and regenerative medicine applications.

A Study on the Optimal Design of Reinforced Concrete Slab-Beam-Column Structures by Direct Method (직접설계법(直接設計法)에 의한 철근(鐵筋)콘크리트 2방향(方向) 슬래브형(型) 구조체(構造體)의 최적설계(最適設計))

  • Kim, Yong Hee;Lyu, Hong Leal;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1985
  • This study is conserned for the optimum design of reinforced concrete slab-beam-column structures with multi-storys and multi-bays by Direct Method. Flexural and shear strength, sectional size, and steel ratio etc., were considered as the design-constraints and the cost function was taken as to objective function. They became high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm was developed in this study and the algorithm was applied to the optimization of reinforced concrete structure system of 5 storys. The result converged to a optimal solution with 3 to 5 iterations, and proved that economical design could be possible when compared with conventional designs.

  • PDF

A study on the analysis of bearing reaction forces and hull deflections affecting shaft alignment using strain gauges for a 50,000 DWT oil/chemical tanker (스트레인 게이지를 이용한 5만 DWT급 석유화학제품운반선의 베어링 반력 및 선체변형량 분석에 관한 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • In modern ships, the shafting system often becomes stiff owing to the high engine power, whereas the hull structure becomes more flexible owing to optimization using high-tensile-strength thick steel plates; therefore, more sophisticated shaft alignments are required. In this study, strain gauge-based measurement was conducted under five vessel operating conditions and bearing reaction forces and hull deflections affecting shaft alignment were analyzed for a 50,000 dead weight tonnage oil/chemical tanker that has gained repute as an eco-friendly vessel in recent years. Furthermore, the analytical results from each technique-theoretical calculation, jacking ups, and strain gauges-were cross-checked against each other in order to enhance the degree of accuracy and reliability of the calculation.

Laminate Weight Optimization of Composite Ship Structures based on Experimental Data (FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계)

  • Oh, Daekyun;Han, Zhiqiang;Noh, Jackyou;Jeong, Sookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process (온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구)

  • Kim, Ho-Yoon;Choi, Chang-Jin;Bae, Won-Byong;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive (상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

A Study on Developing an Optimization Model for Particleboard Manufacturing Processes (파티클보드 제조공정(製造工程)의 최적화(最適化) 모델개발에 관한 연구(硏究))

  • Chung, Joo Sang;Park, Hee Jun;Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.396-405
    • /
    • 1993
  • In this paper, a nonlinear programming model to determine the optimal operating policy to minimize production costs for particleboard plants is presented. The model provides optimal values for three decision variables : specific gravity of particleboard, mat moisture content and mat resin content. These decision variables are key factors influencing the cost and quality of particleboard manufacturing processes. In formulating the nonlinear programming model, the minimum quality standards for internal bond strength and modulus of rupture of particleboard are used as industry-wide quality constraints. These quality standards are expressed as nonlinear functions of the decision variables. In order to demonstrate the applicability of the proposed model, the model is applied to solve for optimal solutions of four theoretical problems. The problem scenarios are built to investigate effects of changes in hot-pressing speed and purchase price of chip and resin.

  • PDF

A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials (CFRP/금속간 접합력 강화를 위한 접합공정 연구)

  • Kwon, Dong-Jun;Park, Sung-Min;Park, Joung-Man;Kwon, Il-Jun
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.416-421
    • /
    • 2017
  • The structural adhesive have been manufactured for improvement of bonding process between CFRP and metal. The optimal condition for bonding process were investigated by evaluating the lap shear strength with amount of adhesive and curing time and the surface treatment of the CFRP. To confirm proper adhesion conditions, the fracture sections between CFRP and metal was observed using reflection microscope. Not only the improvement of the adhesion condition was important, but surface treatment on CFRP was also important. The optimal curing temperature was at $180^{\circ}C$ for 20 minutes. The improvement for adhesive property was confirmed After surface treatment on CFRP. The optimal amount of structural adhesive for bonding between CFRP and metal was $1.5{\times}10^{-3}g/mm^2$. Through the optimization of bonding process, the improvement of mechanical property over 10% is confirmed in comparison with existing adhesive.

A Study on Optimization of Physical Properties of Acrylic Pressure Sensitive Adhesives (아크릴 점착제의 최적물성에 관한 연구)

  • Byeon, Sang-Hoon;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.678-685
    • /
    • 1992
  • The effects of functional monomers on the pressure sensitive adhesive proporties were studied. Acrylic acid and other monomers were copolymerized by radical solution polymerization and their properties were measured. The desirability function methodology was applied to obtain optimum pressure sensitive adhesive properties. Acrylic acid showed more effective than acrylamide on peel strength increase. On the other hand acrylamide showed more effective than acrylic acid on tack decrease. The optimum monomer ratio of the acrylic pressure sensitive adhesive recipe containing n-butylacrylate 81.7 mole%, acrylic acid 8.0 mole%, acrylamide 2.1 mole% and vinylacetate 8.2 mole% was obtained to result from the statistical analysis with the desirability function methodology. The estimated regression equation of desirability function(D) is as follows: $D=.857+.072X_1-.114X_2-.027X_3-.126X_1{^2}-.046X_1{\cdot}X_2-.063X_1{\cdot}X_3-.152X_2{^2}+.027X2{\cdot}X_3-.120X_3{^2}$ $X_1$:coded acylic acid, $X_2$:coded acylamide, $X_3$:coded vinylacetate

  • PDF