Browse > Article

Nanotechnology in the Surface Treatment of Titanium Implant.  

Oh, Seung-Han (Department of Dental Biomaterials, College of Dentistry, Wonkwang University)
Publication Information
The Journal of the Korean dental association / v.48, no.2, 2010 , pp. 106-112 More about this Journal
Abstract
Tissue engineering has been enhanced by advance in biomaterial nature, surface structure and design. In this paper, I report specifically vertically aligned titania ($TiO_2$) nanotube surface structuring for optimization of titanium implants utilizing nanotechnology. The formation, mechanism, characteristics of titania nanotubes are explained and emerging critical role in tissue engineering and regenerative medicine is reviewed. The main focus of this paper is on the unique 3 dimensional tubular shaped nanostructure of titania and its effects on creating epochal impacts on cell behavior. Particularly, I discuss how different cells cultured on titania nanotube are adhered, proliferated, differentiated and showed phenotypic functionality compared to those cultured on flat titanium. As a matter of fact, the presence of titania nanotube surface structuring on titanium for dental applications had an important effect improving the proliferation and mineralization of osteoblasts in vitro, and enhancing the bone bonding strength with rabbit tibia over conventional titanium implants in vivo. The nano-features of titania nanotubular structure are expected to be advantageous in regulating many positive cell and tissue responses for various tissue engineering and regenerative medicine applications.
Keywords
Titania nanotube; tissue engineering; titanium implant; osteoblast; in vivo;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dalby MJ, Gadegaard N, Herzyk P, et al. Nanomechanotransduction and interphase nuclear organization influence on genomic control. J Cell Biochem 2007;102:1234-44.   DOI   ScienceOn
2 Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2130-5. Epub 2009 Jan 28.   DOI   ScienceOn
3 Tao J, Zhao J, Tang C, Kang Y, Li Y. Mechanism study of self-organized $TiO_2$ nanotube arrays by anodization. New Journal of Chemistry 2008.
4 Oh S, Brammer KS, Cobb CJ, Smith G, and Jin S. (2009) $TiO_2$ nanotubes for enhanced cell and bone growth. In: Karlinsey R.L. (ed) Recent Developments in Advanced Medical and Dental Materials Using Electrochemical Methodologies. ISBN: 978-81-308-0335-7, Research Signpost, 199.
5 Linder L, Carlsson A, Marsal L, Bjursten LM, Branemark PI. Clinical aspects of osseointegration in joint replacement. A histological study of titanium implants. J Bone Joint Surg Br 1988;70:550.
6 Pillar RM LJ, Maniatopoulos C. Observation on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Rel Res 1986;208:108.
7 Satomi K, Akagawa Y, Nikai H, Tsuru H. Bone-implant interface structures after nontapping and tapping insertion of screw-type titanium alloy endosseous implants. J Prosthet Dent 1988;59:339.   DOI   ScienceOn
8 Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned $TiO_2$ nanotubes. J Biomed Mater Res A 2006;78:97.
9 Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by $TiO_2$ nanotube surfaces. Nano Lett 2008;8:786.   DOI   ScienceOn
10 Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S, Improved bone-forming functionality on diameter-controlled $TiO_2$ nanotube surface, Acta Biomaterialia, In Press, Available online 15 May 2009.
11 Oh SH, Finones RR, Daraio C, Chen LH, Jin S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005;26:4938.   DOI   ScienceOn
12 Oh SH, The effect of $TiO_2$ nanotubes on the adhesion, proliferation and osteogenic functionality of osteoblasts. J Kor Res Soc Dent Mater 2008;35:297.
13 Boyan BD, Humbert, T.W,. Dean, D.D., Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137.   DOI   ScienceOn
14 Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 1993;104:613.
15 Martinez E, Engel, E., Planell, J.A., Samitier, J. Ann Anat 2009;191:126.   DOI   ScienceOn
16 Bjursten LM, Rasmusson, L., Oh, S., Smith, G.C., Brammer, K.S., Jin, S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res 2009;88A.
17 Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: $TiO_2$ nanotube diameter directs cell fate. Nano Lett 2007;7:1686   DOI   ScienceOn
18 Dalby MJ. Nanostructured surfaces: cell engineering and cell biology. Nanomed 2009;4:247-8.   DOI   ScienceOn
19 Dalby MJ, Pasqui D, Affrossman S. Cell response to nano-islands produced by polymer demixing: a brief review. IEE Proc Nanobiotechnol 2004; 151:53-61.   DOI   ScienceOn
20 Dalby MJ, McCloy D, Robertson M, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 2006; 27:2980-7.   DOI   ScienceOn
21 Dalby MJ, Gadegaard N, Curtis AS, Oreffo RO. Nanotopographical control of human osteoprogenitor differentiation. Curr Stem Cell Res Ther 2007;2:129-38.   DOI   ScienceOn
22 Prakasam HE, Shankar K, Paulose M, Varghese OK, and Grimes CA. A New Benchmark for $TiO_2$ Nanotube Array Growth by Anodization. J. Phys. Chem. C, 2007. 111: p. 7235-7241.   DOI   ScienceOn
23 Prakash S, Tuli GD, Basu SK, and Madan RD. Advanced Inorganic Chemistry, 2005. 2.
24 Gallagher JO, McGhee KF, Wilkinson CD, Riehle MO. Interaction of animal cells with ordered nanotopography. IEEE Trans Nanobioscience 2002;1:24.   DOI   ScienceOn
25 Curtis AS, Dalby M, Gadegaard N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomed 2006;1:67.   DOI   ScienceOn
26 Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, Oreffo RO. Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J R Soc Interface 2008.
27 Dalby MJ RM, Johnstone H, et al. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2001;23:2945.