• 제목/요약/키워드: Streamflow Forecasting

검색결과 65건 처리시간 0.034초

Analyzing effect and importance of input predictors for urban streamflow prediction based on a Bayesian tree-based model

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.134-134
    • /
    • 2022
  • Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.

  • PDF

Accounting for Uncertainty Propagation: Streamflow Forecasting using Multiple Climate and Hydrological Models

  • 권현한;문영일;박세훈;오태석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1388-1392
    • /
    • 2008
  • Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.

  • PDF

일 유량 자료의 카오스 특성 및 예측 (Analysis of Chaos Characterization and Forecasting of Daily Streamflow)

  • 왕원준;유영훈;이명진;배영해;김형수
    • 한국습지학회지
    • /
    • 제21권3호
    • /
    • pp.236-243
    • /
    • 2019
  • 현재까지 많은 수문 시계열은 전통적인 선형 모형을 이용하여 분석되고 예측되어 왔다. 하지만, 자연현상과 수문시계열의 패턴 및 변동과 관련하여 비선형적 구조의 증거가 발견되고 있다. 따라서 시계열 분석 및 예측을 위한 기존의 선형 모형은 비선형적 특성에 적합하지 않을 수 있다. 본 연구에서는 미국 플로리다 코코아 지역 인근에 있는 St.Johns 강의 일유량 자료에 대한 카오스 분석을 수행하였고, 그 결과 낮은 차원의 비선형 동역학적 특성을 가진 흥미로운 결과가 나타났지만 한국의 소양강댐 일유량 자료는 확률적 특성을 보여주었다. 카오스 특성을 토대로한 DVS(결정론적 vs 추계학적) 알고리즘을 이용해 두 시계열 시스템의 특성을 파악하였고 단기 예측을 수행하였다. 또한 본 연구에서는 일 유량 시계열 예측을 위해 인공신경망 방법을 사용하였고, DVS 알고리즘에 의한 예측을 비교 분석하였다. 분석 결과, 카오스 특성을 갖는 시계열 자료가 보다 정확한 예측성을 보였다.

하천유역의 홍수관리 시스템 모델 (Flood-Flow Managenent System Model of River Basin)

  • Lee, Soon-Tak
    • 물과 미래
    • /
    • 제26권4호
    • /
    • pp.117-125
    • /
    • 1993
  • A flood -flow management system model of river basin has been developed in this study. The system model consists of the observation and telemetering system, the rainfall forecasting and data-bank system, the flood runoff simulation system, the dam operation simulation system, the flood forecasting simulation system and the flood warning system. The Multivariate model(MV) and Meterological-factor regression model(FR) for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood-flow management. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, streamflow and other hydrological data during the past flood periods. The flood-flow management system model with SSARR model(FFMM-SR,FFMM-SR(FR) and FFMM-SR(MV)), in which the integrated operation of dams and rainfall forecasting in the basin are considered, is then suggested and applied for flood-flow management and forecasting. The results of the simulations done at the base stations are analysed and were found to be more accurate and effective in the FFMM-SR and FFMM0-SR(MV).

  • PDF

Using Bayesian tree-based model integrated with genetic algorithm for streamflow forecasting in an urban basin

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.140-140
    • /
    • 2021
  • Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.

  • PDF

실시간 유출예측을 위한 선행강우지수별 TF모형의 유도 (Derivation of Transfer Function Models in each Antecedent Precipitation Index for Real-time Streamflow Forecasting)

  • 남성우;박상우
    • 대한토목학회논문집
    • /
    • 제12권1호
    • /
    • pp.115-122
    • /
    • 1992
  • 실시간 유출예측에서 주로 쓰이는 추계학적 강우-유출 과정모형은 모형구조가 간단하고 상태 공간 모형으로 수식화하기에 용이한 TF모형이다. 이 모형을 이용하여 실시간 유출예측을 효율적으로 수행하기 위해서는 정확한 모형구조의 결정이 선행되어야 하며, 특히 예측초기의 오차를 줄일 수 있는 방법이 요구된다. 본 연구에서는 이를 위하여 유역의 초기습윤상태를 나타낼 수 있는 5일 선행강우지수를 threshold개념으로 도입하고, 각각의 TF모형을 Box-Jenkins 방법으로 등정하여 비교 검토하여 보았다.

  • PDF

추계학적 강우-유출관계의 실시간 순환예측모형 (Real-time Recursive Forecasting Model of Stochastic Rainfall-Runoff Relationship)

  • 박상우;남선우
    • 물과 미래
    • /
    • 제25권4호
    • /
    • pp.109-119
    • /
    • 1992
  • 본 연구에서는 호우시 홍수예경보 및 수자원의 효율적 관리를 위한 실시간 유출예측모형을 개발하고자 하였다. 그 방법으로 강우-유출과저의 추계학적 시스템모형을 구성하고 모형의 매개변수를 순환 최적추정할 수 있는 RLS 및 IV-AML 알고리즘을 적용하였다. 또한 기존에 관측된 시간별 강우-유출자료로부터 매개변수 및 추정오차의 공분산행렬의 초기치들을 산정하여 유출예측의 성과도를 향상시키고자 하였으며, 1단계전 유출예측치를 분석함으로서 본 연구에서 개발된 모형의 정확성과 적용가능성을 검토해 보았다.

  • PDF

앙상블 예측기법을 통한 유역 월유출 전망 (Forecasting Monthly Runoff Using Ensemble Streamflow Prediction)

  • 이상진;김주철;황만하;맹승진
    • 한국농공학회논문집
    • /
    • 제52권1호
    • /
    • pp.13-18
    • /
    • 2010
  • In this study the validities of runoff prediction methods are reviewed around ESP (Ensemble Streamflow Prediction) techniques. The improvements of runoff predictions on Yongdam river basin are evaluated by the comparison of different prediction methods including ESP incorporated with qualitative meteorological outlooks provided by meteorological agency as well as the runoff forecasting based on the analysis of the historical rainfall scenarios. As a result it is assessed that runoff predictions with ESP may give rise to more accurate results than the ordinary historical average runoffs. In deed the latter gave the mean of yearly absolute error as to be 60.86 MCM while the errors of the former ones amounted to 44.12 MCM (ESP) and 42.83 MCM (ESP incorporated with qualitative meteorological outlooks) respectively. In addition it is confirmed that ESP incorporated with qualitative meteorological outlooks could improve the accuracy of the results more and more. Especially the degree of improvement of ESP with meteorological outlooks shows rising by 10.8% in flood season and 8% in drought season. Therefore the methods of runoff predictions with ESP can be further used as the basic forecasting information tool for the purpose of the effective watershed management.