Browse > Article
http://dx.doi.org/10.17663/JWR.2019.21.3.236

Analysis of Chaos Characterization and Forecasting of Daily Streamflow  

Wang, W.J. (Disaster Research Team, Disaster Management Research Center)
Yoo, Y.H. (Department of Civil Engineering, Inha university)
Lee, M.J. (Department of Civil Engineering, Inha university)
Bae, Y.H. (Department of Civil Engineering, Inha university)
Kim, H.S. (Department of Civil Engineering, Inha university)
Publication Information
Journal of Wetlands Research / v.21, no.3, 2019 , pp. 236-243 More about this Journal
Abstract
Hydrologic time series has been analyzed and forecasted by using classical linear models. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property. Based on the chaotic dynamical characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily streamflow series can be used and the two techniques are compared in this study. As a result, the daily streamflow which has chaotic property showed much more accurate result in short term forecasting than stochastic data.
Keywords
Chaos; Forecasting; DVS Algorithm; Neural Network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barnett, K. D. (1993). On the estimation of the correlation dimension and its application to radar reflector discrimination.
2 Casdagli, M. (1992). Chaos and deterministic versus stochastic non-linear modelling. Journal of the Royal Statistical Society: Series B (Methodological), 54(2), 303-328.   DOI
3 Chan, K. S. and Tong, H. 2001, Chaos: A Statistical Perspective. New York, Springer.
4 Damle, C., & Yalcin, A. (2007). Flood prediction using time series data mining. Journal of Hydrology, 333(2-4), 305-316.   DOI
5 Edossa, D. C., & Babel, M. S. (2011). Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water resources management, 25(6), 1759-1773.   DOI
6 Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Physical review letters, 59(8), 845-848.   DOI
7 Ghorbani, M. A., Khatibi, R., Mehr, A. D., & Asadi, H. (2018). Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting. Journal of hydrology, 562, 455-467.   DOI
8 Graf, K. E., & Elbert, T. (1989). Dimensional analysis of the waking EEG. In Brain dynamics (pp. 174-191). Springer, Berlin, Heidelberg.
9 Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9(1-2), 189-208.   DOI
10 Holzfuss, J., & Mayer-Kress, G. (1986). An approach to error-estimation in the application of dimension algorithms. In Dimensions and entropies in chaotic systems (pp. 114-122). Springer, Berlin, Heidelberg.
11 Kim, H., Eykholt, R., & Salas, J. D. (1999). Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 127(1-2), 48-60.   DOI
12 Kim, S., Kim, Y., Lee, J., & Kim, H. S. (2015). Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes. Advances in Meteorology, 2015.
13 Kisi, O., & Cimen, M. (2011). A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399(1-2), 132-140.   DOI
14 Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physical review letters, 45(9), 712.   DOI
15 Kyoung, M. S., Kim, H. S., Sivakumar, B., Singh, V. P., & Ahn, K. S. (2011). Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stochastic Environmental Research and Risk Assessment, 25(4), 613-625.   DOI
16 Lall, U., Sangoyomi, T., & Abarbanel, H. D. (1996). Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting. Water Resources Research, 32(4), 975-985.   DOI
17 Liang, Z., Xiao, Z., Wang, J., Sun, L., Li, B., Hu, Y., & Wu, Y. (2019). An Improved Chaos Similarity Model for Hydrological Forecasting. Journal of Hydrology, 123953.
18 Phoon, K. K., Islam, M. N., Liaw, C. Y., & Liong, S. Y. (2002). Practical inverse approach for forecasting nonlinear hydrological time series. Journal of Hydrologic Engineering, 7(2), 116-128.   DOI
19 Porporato, A., & Ridolfi, L. (1997). Nonlinear analysis of river flow time sequences. Water Resources Research, 33(6), 1353-1367.   DOI
20 Puente, C. E., & Obregon, N. (1996). A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Water resources research, 32(9), 2825-2839.   DOI
21 Rodriguez-Iturbe, I., Febres De Power, B., Sharifi, M. B., & Georgakakos, K. P. (1989). Chaos in rainfall. Water Resources Research, 25(7), 1667-1675.   DOI
22 Salas, J. D., Kim, H. S., Eykholt, R., Burlando, P., & Green, T. R. (2005). Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes. Nonlinear processes in geophysics, 12(4), 557-567.   DOI
23 Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366-381). Springer, Berlin, Heidelberg.
24 Sangoyomi, T. B., Lall, U., & Abarbanel, H. D. (1996). Nonlinear dynamics of the Great Salt Lake: dimension estimation. Water resources research, 32(1), 149-159.   DOI
25 Sharifi, M. B., Georgakakos, K. P., & Rodriguez-Iturbe, I. (1990). Evidence of deterministic chaos in the pulse of storm rainfall. Journal of the Atmospheric Sciences, 47(7), 888-893.   DOI
26 Sivakumar, B., Berndtsson, R., & Persson, M. (2001). Monthly runoff prediction using phase space reconstruction. Hydrological sciences journal, 46(3), 377-387.   DOI
27 Tsonis, A. A., & Elsner, J. B. (1988). The weather attractor over very short timescales. Nature, 333(6173), 545.   DOI
28 Zhang, L., Xia, J., Song, X., Cheng, X., (2009). Similarity model of chaos phase space and its application in midand long-term hydrologic prediction. Kybernetes, 38 (10), 1835-1842.   DOI