
한국습지학회 제21권 제3호, 2019

1)
1. Introduction

Many hydrologists have used ARMA (autoregressive/moving 

average) type model which is linear for analyzing and forecasting 

of hydrologic time series. However, the correlation among 

hydrologic variables may consist of the form of nonlinear 

function and linear analysis may have errors in modeling and 

forecasting of hydrologic system.  Nonlinear time series have 
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been analyzed both as nonlinear stochastic processes and as 

chaotic systems (Chan and Tong, 2001).  In particular, many 

hydrologists have analyzed hydrologic phenomena based on 

chaotic systems (Rodriguez-Iturbe et al., 1989; Sharifi et al., 

1990; Sangoyomi et al., 1996; Lall et al., 1996; Puente and 

Obregon, 1996; Porporato and Ridolfi, 1997; Salas et al., 2005; 

Kyoung et al., 2011; Kim et al., 2015). 

Though chaotic dynamic system has unpredictable 

complication in itself, it has a nonlinear deterministic 

characteristic that it only has.  If nonlinear deterministic 

characteristic is found in a system, it can be considered as 
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Abstract

Hydrologic time series has been analyzed and forecasted by using classical linear models.  However, there is growing 
evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations.  
Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. 
Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear 
dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property.  Based on the chaotic dynamical 
characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the 
properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily 
streamflow series can be used and the two techniques are compared in this study.  As a result, the daily streamflow which 
has chaotic property showed much more accurate result in short term forecasting than stochastic data. 

Key words : Chaos, Forecasting, DVS Algorithm, Neural Network

요 약

현재까지 많은 수문 시계열은 전통적인 선형 모형을 이용하여 분석되고 예측되어 왔다. 하지만, 자연현상과 수문시계열의 패
턴 및 변동과 관련하여 비선형적 구조의 증거가 발견되고 있다. 따라서 시계열 분석 및 예측을 위한 기존의 선형 모형은 비
선형적 특성에 적합하지 않을 수 있다. 본 연구에서는 미국 플로리다 코코아 지역 인근에 있는 St.Johns 강의 일유량 자료에 
대한 카오스 분석을 수행하였고, 그 결과 낮은 차원의 비선형 동역학적 특성을 가진 흥미로운 결과가 나타났지만 한국의 소
양강댐 일유량 자료는 확률적 특성을 보여주었다. 카오스 특성을 토대로한 DVS(결정론적 vs 추계학적) 알고리즘을 이용해 
두 시계열 시스템의 특성을 파악하였고 단기 예측을 수행하였다. 또한 본 연구에서는 일 유량 시계열 예측을 위해 인공신경
망 방법을 사용하였고, DVS 알고리즘에 의한 예측을 비교 분석하였다. 분석 결과, 카오스 특성을 갖는 시계열 자료가 보다 
정확한 예측성을 보였다.

핵심용어 : 카오스, 예측, DVS 알고리즘, 인공신경망
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chaotic system and it can be possible to do short-term prediction 

using chaotic system. Many researchers analyzed chaotic 

property of the hydrologic series and performed the short-term 

forecasting (Lall et al., 1996; Porporato and Ridolfi, 1997; 

Sivakumar et al., 2001; Phoon et al., 2002; Damle and Yalcin, 

2007; Zhang et al., 2009; Edossa and Babel, 2011; Kisi and 

Cimen, 2011; Ghorbani et al., 2018; Liang et al., 2019). This 

study is also to perform short-term forecasting for daily 

streamflow time series using the DVS (deterministic versus 

stochastic) algorithm proposed by Casdagli (1991) and a neural 

network scheme based on chaos examination of the series.

2. Data Used and Chaos Characterization

2.1 Study area and data used

Data sets used in this study are a daily streamflow at St. 

Johns river near Cocoa, Florida, USA (case-1) and a daily 

inflow series at Soyang reservoir in Korea (case-2). 

The case-1 series was analyzed for the investigation of its 

chaotic behavior by Kim et al. (1999) and it showed deterministic 

chaos.  The case-1 series consists of 12,784 measurements 

Fig 1. Time series of case-1.

Fig 2. Time series of case-2.

Table 1. Basic statistics of each time series

Case-1 Case-2

Mean 987.5548 (cfs) 66.1459 (cms)

Standard deviation 1166.2364 205.1937

Max Value 10700 (cfs) 7062.6 (cms)

Min Value 5.6 (cfs) 0 (cms)

Skewness coefficient -0.1918 -0095

from January 1, 1954 to December 31, 1988.  Another data 

set used consists of 8,776 measurements from January 1, 1974 

to December 31, 1997.  The time series plots are shown in 

Figs. 1 and 2, and basic statistics in Table 1.

2.2 Phase space reconstruction

The first step in the search for a deterministic behavior of 

underlying system is to reconstruct the dynamics in phase space.  

The phase space can be approximated by using a single record 

of some observable xt, Nt ,,2,1  , where N is data size (Packard 

et al., 1980; Takens, 1981).  A single value time series can 

reconstruct the attractor on m-dimensional phase space using 

delay method. The method entails the form of construction:

},,,,{ )1(2   mtttt xxxx  (1)

where  is the delay time.

In streamflow series at St. Johns river near Cocoa, the 

autocorrelation function decays exponentially, selecting delay 

time at which autocorrelation function drops 1/e (Tsonis and 

Elsner, 1988). Thus, the delay time of streamflow series at 

St. Johns river near Cocoa is 48 days.  In the case of inflow 

series at Soyang reservoir, the delay time  = 10 days is chosen 

from the local minimum of autocorrelation function (Holzfuss 

and Mayer-Kress, 1986; Graf and Elbert, 1990).  The attractors 

for the time series of case-1 and case-2 are reconstructed 

in 2-dimensional phase space as shown in Figs. 3 and 4.

Fig 3. Attractor for case-1.
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Fig 4. Attractor for case-2.

2.3 Correlation dimension

After the attractor has been reconstructed using Eq. (1), 

quantitative properties of the chaotic system can be determined. 

The correlation dimension introduced by Grassberger and 

Procaccia (1983) is widely used in many fields for the quantitative 

characterization of strange attractors. The correlation integral 

for the embedded time series is the following function:

 






Mji

ji xxr
MM

rNmC
1)1(
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Where, 0)(  a  if 0a , 1)(  a  if 0a

N  is the size of the data set, )1(  mNM  is the number 

of embedded points in m -dimensional space and ||||  denotes 

the sup-norm.  ),,( rNmC  measures the fraction of the pairs 

of points ix


, i = 1,2, ..., M, whose sup-norm separation is 

no greater than r.  If the limit of ),,( rNmC  as N  exists 

for each r, we write the fraction of all state vector points that are 

within r of each other as ),( rmC  = ),,(lim rNmC
N   and the correlation 

dimension is defined as ]log/),([loglim)(
02 rrmCmD

r
 . In 

practice, N remains finite, and thus, r cannot go to zero; instead, 

a linear region of slope )(2 mD  can be found in the plot of 

),,(log rNmC  vs. log r.  The slope, )(2 mD  or  is correlation 

dimension which can be calculated from the following equation :
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Common least squares methods are not optimal for use when 

the data points are not independent. Therefore, we may use 

Eq. (4) for the calculation of correlation dimension because 

the individual increments of the correlation integral are 

independent (Barnett, 1993).
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Where, x = log(r) and y = log[C(m, r)]. 

(a) correlation integral

(b) correlation dimension

Fig. 5. Estimation of correlation dimension for case-1.

It is possible to say that the time series has a chaotic characteristic 

(Kim et al., 1999). For the time series of case-1 and case-2, 

the linear regions of the correlation integrals are visually chosen 

from Figs. 5(a) and 6(a).  The linear regions are shown as dark 

lines and the correlation dimensions are calculated as shown 

in Figs. 5(b) and 6(b). Streamflow series at St. Johns river near 

Cocoa shows the correlation dimension of 3.305 

On the other hand, in the case of inflow series at Soyang 

reservoir, the correlation dimension calculated is increasing 

as embedding dimension is increased and it may be difficult 

to conclude that the inflow series is chaos.   
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(a) correlation integral

(b) correlation dimension

Fig. 6. Estimation of correlation dimension for case-2

3. Forecasting Streamflow Using Chaotic 

Dynamics

3.1 DVS algorithm

For a scalar time series {xi}=x1, x2,, xN, the DVS algorithm 

attempts to fit models of the form:

),,,( )1(    miiiTi xxxfx  (5)

It is used a least-squares method to find the function f that 

gives the best prediction for Tix   in the sense that the function 

minimizes the squared error within the model class.  The integers 

T and m define the following quantities.

T : lead time or prediction horizon (prediction time into 

the future)

m : embedding dimension or dimension of the reconstructed 

phase space(number of taps of the tapped delay line)

Furthermore, the m are combined in the delay vector xi.  

Here assuming equal spacing of the taps of the delay line, 

i.e., ),,,( )1(    miiiTi xxxfx  , where  is the lag time 

or lag spacing between each of the taps.  After these definitions, 

the DVS algorithm is given by

(1) Normalize the time series to zero mean and unit variance.

(2) Divide the time series into two parts:

   1) a training set or fitting set {x1,…,xNf } used to estimate 

the coefficients of each model,

   2) a test set or out-of-sample set {xNf+1,…,xNf+Nt } used 

to evaluate the model. Nf denotes the number of points 

in the fitting set, Nt the number of points in the test 

set.

(3) Choose T and m
(4) Choose a test delay vector xi for a T-step-ahead 

forecasting task (i>Nf ).

(5) Compute the distances dij of the test vector xi from the 

training vectors xj

(for all j such that (m-1)  < j < i – T )

(6) Order the distances dij 

(7) Find the k nearest neighbors 
)1(
jx  through 

)(k
jx  of xi, 

and fit an affine model with coefficients  , …,   

of the following form


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(8) Use the fitted model from step (7) to estimate a 

T-step-ahead forecast )(kx Ti


 starting from the test 

vector, and compute its error

TiTiTi xxke   )( (7)

(9) Repeat step (4) through (8) as (i+T) runs through the 

test set, and compute the mean absolute forecasting error
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Vary the embedding dimension m, and plot the curves Em(k) 

as functions of the number of nearest neighbor (k).  Such 

a plot of the family of curves is called DVS plot. 

The name of above algorithm derives from the fact that the 

shapes of the resulting plots can provide evidence of low 

dimensional deterministic chaos, or of high dimensional or 

stochastic dynamics. Low dimensional chaos is typically 

characterized by U-shaped or monotonically increasing plots 

whose minimum Em(k) values are small and occur at low values 

of k.  High dimensional or stochastic behavior is often indicated 
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Fig. 7. DVS plot for case-1.

Fig. 8. DVS plot for case-2.

by relatively large minimum Em(k) values occurring at high 

k values (Casdagli, 1991).

The DVS algorithm suggested by Casdagli (1991) is used 

for two flow series. The dimension of the reconstructed phase 

space m is varied from 2 to 10.  Figs. 7 and 8 are the 

DVS plots for lead time T=1day.  The daily streamflow 

series at St. Johns river near Cocoa has a chaotic characteristic 

and daily inflow series at Soyang reservoir has no chaotic. 

Based on chaotic analysis, we may know daily streamflow 

at St. Johs river near Cocoa has the low Em(k) in DVS 

plot.  However, the shape of DVS plot for daily inflow 

series at Soyang reservoir is a stochastic process. Thus, daily 

inflow series at Soyang reservoir does not have a chaotic 

characteristic. 

The results of the DVS plots show the best k and m.  Based 

on the local linear approximation method (Farmer and 

Sidorowich, 1987) with the best k and m, the forecasting is 

performed.  The DVS algorithm has 301 days test sets of two 

daily flow series. The remaining data series are training sets. 

Because the DVS algorithm makes the relationship among the 

peak flows and among the low flows, the effect of the magnitude 

of data sets for forecast error may be small. Figs. 9 and 10 

show the relationship between the observed and the forecasted 

values for each lead times (T=1, 10, 20days).  Tables 2 and 

3 show the comparison of mean, standard deviation, peak, 

peak time and volume between the observed and the forecasted 

values for two series of case-1 and –2.  Also, Tables 2 and 3 

Table 2. Forecasting results based on DVS algorithm for case-1.

Observed T = 1 day T = 10 day T = 20 day
mean (cfs) 1110.0166 1118.9598 1182.3164 1312.8778
standard dev. 1172.8175 1188.1831 1181.7981 1247.1936
peak (cfs) 5390 5380.3591 4588.9906 5436.7147
peak time (day) 3 1 8 6
volume (ft3) 2.887*1010 2.910*1010 3.075*1010 3.414*1010
AMB 24.5945 232.8725 433.6558
RMSE 40.0200 356.4302 593.7325
RRMSE 0.0248 0.2209 0.3680
MRE 0.0266 0.2464 0.5782
correlation coef. 0.9995 0.9560 0.8951

Table 3. Forecasting results based on DVS algorithm for case-2

Observed T = 1 day T = 10 day T = 20 day
mean (cms) 78.2837 80.6159 54.2741 52.5867
standard dev. 131.1263 116.3670 55.3625 41.3863
peak (cms) 1023.5 901 454 325
peak time (day) 64 65 74 84
volume (m3) 2.036*109 2.100*109 1.408*109 1.365*109
AMB 40.2272 59.8196 62.5980
RMSE 106.9739 136.6363 135.5353
RRMSE 0.7013 0.8958 0.8886
MRE 0.5241 0.9006 1.1712
correlation coef. 0.6312 0.1436 0.1056
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show the measures of forecast errors which can measure the 

forecast accuracy. As the forecast errors (AMB (Absolute Mean 

Bias), RMSE (Root Mean Square Error), RRMSE (Relative 

Root Mean Square Error, MRE (Magnitude of Relative Error)) 

are decreased, the correlation coefficient is approached to 1.  

The chaotic streamflow time series shows that the correlation 

coefficients between the forecasted and the observed values 

are 0.9995 and the non-chaotic streamflow time series shows 

0.6311 for 1 day-ahead lead time (see Tables 2 and 3, and 

Fig. 9).  As the lead time is increased the accuracy of the 

forecast is decreased.   Chaotic streamflow at St. Johns river 

near Cocoa, shows more accurate than non-chaotic inflow 

in their correlation coefficients and low forecasting errors (AMB, 

RMSE, RRMSE, MRE).  The forecasting results of the lead 

time of 10, 20 day-ahead for chaotic streamflow are also 

relatively satisfactory.    

3.2 Neural network

More accurate forecasting is done by introducing neural 

network theory that is used in the field of artificial intelligence.  

The neural network used in this study has three field layers 

of neurons and used the feedforward neural network based 

on backpropagation.  The model for forecasting flows that 

is used in this study is constructed as follows:     

 )(,),1()(ˆ QntQtQftQ   (8)

where )(ˆ tQ  is the forecasted value, f is the function which 

represents the relationship between input and output, and nQ 

is the lag time of flow.  

The neural network model used in this study has one training 

pair consisting of the five inputs [Q(t-1), Q(t-2), Q(t-3), 
Q(t-4), Q(t-5)] and a single output node [Q(t)].  The 

relationship between the inputs and the outputs is shown in 

Eq. 8.  For this study it consists of three layers, an input layer, 

a hidden layer and an output layer.  All the connection weights 

are varied to minimize the squared error, calculated as the 

difference between the network’s predicted output and the actual 

value.  If the network architecture is rich enough, this procedure 

eventually leads the network to a state in which inputs are correctly 

mapped to outputs for all chosen training pairs.

Tables 4 and 5 are forecasting results obtained by using neural 

network for streamflow series at St. Johns river near Cocoa 

and for inflow series at Soyang reservoir. Fig. 10 shows the 

relationship between the observed and the forecasted values 

for each lead times (T=1, 10, 20days) based on the neural 

network.

Table 4. Forecasting results for case-1 based on neural network

Observed T = 1 day T = 10 day T = 20 day

mean (cfs) 1110.0166 1128.3836 1268.0264 1262.9949

standard dev. 1172.8175 1200.7887 1238.7293 1042.6037

Peak (cfs) 5390 5403.1866 5020.2897 4177.0611

peak time (day) 3 1 9 19

volume (ft3) 2.887*1010 2.935*1010 3.297*1010 3.285*1010

AMB 32.1488 264.9647 477.5641

RMSE 51.9367 366.3604 701.8710

RRMSE 0.0322 0.2271 0.4350

MRE 0.0303 0.3139 0.5832

correlation coef. 0.9994 0.9638 0.8144

Table 5. Forecasting results for case-2 based on neural network

Observed T = 1 day T = 10 day T = 20 day

mean (cms) 78.2837 50.6108 77.9351 32.2398

standard dev. 131.1263 39.7390 6.2353 3.1620

peak (cms) 1023.5 336.954 122.822 54.9504

peak time (day) 64 65 74 84

volume (m3) 2.036*109 1.316*109 2.027*109 0.838*109

AMB 41.1067 71.6665 57.2552

RMSE 113.7866 130.2752 138.5819

RRMSE 0.7460 0.8541 0.9086

MRE 0.6436 2.0956 0.7301

correlation coef. 0.6286 0.0686 0.0751



Chaos Characterization and Forecasting of Daily Streamflow 

한국습지학회 제21권 제3호, 2019

242

In the results, when using a neural network for 1 day-ahead 

lead time, the chaotic streamflow time series shows that the 

correlation coefficients are 0.9994 and the non-chaotic inflow 

time series are 0.6286.  The neural network also shows accurate 

forecasting results and low forecasting error for chaotic 

streamflow series.  The results for the lead time of 10, 20 

day-ahead are also relatively satisfactory even though the result 

based on the DVS algorithm is a little better.  However, in 

daily inflow series at Soyang reservoir the forecasting results 

shows poor performance as we can see in Tables 4 and 5, 

and Fig. 10. 

4. Conclusions

This study investigated the chaos characteristics based on 

the correlation dimension and the DVS plots, and performed 

the forecasting using the DVS algorithm and a neural network 

scheme. As a results it has been found that the forecasts of 

the time series which has chaotic characteristics are incredibly 

accurate from the analysis. However, the non-chaotic time 

series which has stochastic characteristics showed less accurate 

forecasts. For example, the prediction accuracy of case 1 is 

as follows: MRE is 0.0303 when T is 1 and MRE is 0.3139 

when T is 10, whereas the prediction accuracy of case 2 is 

as follows: MRE is 0.6436 when T is 1 and MRE is 2.0956 

when T is 10 (see Table 4, 5). Although the standardization 

of precise methods for analysis and forecasting of chaotic data 

is being under study we showed that the hydrologic time series 

which exhibits chaotic behavior have better forecasts than 

stochastic analog in short-term forecasting.

(a) Case-1 (b) Case-2

Fig. 9. Relationship between observed and forecasted values for 1 day-ahead lead time.

(a) Case-1 (b) Case-2

Fig. 10. Relationship between observed and forecasted values for 1 day-ahead lead time
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