• Title/Summary/Keyword: Strapdown

Search Result 101, Processing Time 0.021 seconds

Mixing algorithm for attitude computation of underwater vehicle using fuzzy theory (퍼지 이론을 이용한 수중 운동체의 자세계산 혼합 알고리즘)

  • 김영한;이장규;한형석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.265-272
    • /
    • 1996
  • In this paper, attitude computation algorithm for a strap down ARS(Attitude Reference System)of an underwater vehicle has been studied. Attitude errors o the ARS using low-level gyroscopes tend to increase with time due to gyroscope errors. To cope with this problem, a mixing algorithm of accelerometer aided attitude computation has been developed. The algorithm can successfully bound the error increase for cruising motion, but it gives instantaneously large errors when a vehicle maneuvers. To improve the performance in case of vehicle's maneuver, a new attitude computation mixing algorithm complying state of vehicle and to manage the adjustment of the gains which are invariant in the existing algorithm. In addition, a gain scheduling method is applied to fuzzy inference composition process for real-time computation. Monte Carlo simulation results show that the proposed algorithm provides better performance than the existing algorithm.

  • PDF

Optical Misalignment Cancellation via Online L1 Optimization (온라인 L1 최적화를 통한 탐색기 비정렬 효과 제거 기법)

  • Kim, Jong-Han;Han, Yudeog;Whang, Ick Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1078-1082
    • /
    • 2017
  • This paper presents an L1 optimization based filtering technique which effectively eliminates the optical misalignment effects encountered in the squint guidance mode with strapdown seekers. We formulated a series of L1 optimization problems in order to separate the bias and the gradient components from the measured data, and solved them via the alternating direction method of multipliers (ADMM) and sparse matrix decomposition techniques. The proposed technique was able to rapidly detect arbitrary discontinuities and gradient changes from the measured signals, and was shown to effectively cancel the undesirable effects coming from the seeker misalignment angles. The technique was implemented on embedded flight computers and the real-time operational performance was verified via the hardware-in-the-loop simulation (HILS) tests in parallel with the automatic target recognition algorithms and the intra-red synthetic target images.

In-Flight Alignment of Inertial Navigation System Using Line-Of-Sight Information

  • Oh, Seung-Jin;Kim, Dong-Bum;Kim, Woo-Hyun;Jeong, Sang-Keun;Lee, Hyung-Keun;Lee, Jang-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.109-113
    • /
    • 2006
  • This paper presents an in-flight alignment method for strapdown inertial navigation systems based on the line-of-sight information. Unlike the existing methods, the proposed method utilizes only the 2-axis angle measurements of the onboard image sensor and does not require any explicit range measurements between the vehicle and landmarks. To improve the accuracy of all the position, velocity, and attitude estimates through the in-flight alignment, an error model of the image-sensor-aided SDINS is derived. A simulation study demonstrates that the accuracy of SDINS can be improved by the line-of-sight information only.

  • PDF

A New Approach for SINS Stationary Self-alignment Based on IMU Measurement

  • Zhou, Jiangbin;Yuan, Jianping;Yue, Xiaokui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.355-359
    • /
    • 2006
  • For the poor observability of azimuth misalignment angle and east gyro drift rate of the traditional initial alignment, a bran-new SINS stationary fast self-alignment approach is proposed. By means of analyzing the characteristic of the strapdown inertial navigation system (SINS) stationary alignment seriously, the new approach takes full advantage of the specific force and angular velocity information given by inertial measurement unit (IMU) instead of the mechanization of SINS. Firstly, coarse alignment algorithm is presented. Secondly, a new fine alignment model for SINS stationary self-alignment is derived, and the observability of the model is analysed. Then, a modified Sage-Husa adaptive Kalman filter is introduced to estimate the misalignment angles. Finally, some computer simulation results illustrate the efficiency of the new approach and its advantages, such as higher alignment accuracy, shorter alignment time, more self-contained and less calculation.

  • PDF

Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope (동조자이로스코프의 기계부 오차 해석 및 동적밸런싱)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

Compensation of Pseudo Gyro Bias in SDINS (SDINS에서 의사 자이로 바이어스 보상 기법)

  • Jungmin Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.

Fault Detection Using Propagator for Kalman Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.978-983
    • /
    • 2003
  • In this paper, we propose a fault detection method for extended Kalman filter in decentralized filter structure. To detect a fault, a consistency between filter output and a monitoring signal is tested. State propagators are used to obtain the monitoring signal. However, the output of state propagator increases in magnitude and finally diverges as time runs. To solve such problem, two-propagator method was proposed for linear system. Two propagators are reset by Kalman filter output, alternatively, to avoid divergence. But a test statistics change abruptly at the reset instant in that method. Hence a N-step propagator method is proposed to fix up the problem. In the N-step propagator, only time propagations are performed from k-N+1 step to k step without measurement updates. A test statistics are defined by errors and its covariance between extended Kalman filter and N-step propagator. These fault detection methods are applied to integrated strapdown inertial navigation system (SDINS). By computer simulation, it is shown that the proposed methods detect a fault effectively.

  • PDF

LOS Determination Using INS for an Aircraft Mounted Satellite Tracking Antenna (관성측정기를 이용한 항공기용 위성추적 안테나의 지향각 결정)

  • Jung, Ha-Hyoung;Kim, Chung-Il;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • This paper presents a computation method of LOS(Line Of Sight) angle using IMU(Inertial Measurement Unit) for an antenna on aerial vehicle to point to a stationary satellite. In the overall system, the antenna is located at the front of the vehicle, and an IMU is introduced to account for body flexure dynamic. And using the differences between the position and velocity of the IMU based navigation and those of GPS/INS at the vehicle center. Kalman filter is designed to suppress Strapdown INS drift errors.

Error analysis for a strapdown inertial navigation system (스트랩다운 관성항법장치의 오차해석)

  • 심덕선;박찬국;송유섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.286-289
    • /
    • 1986
  • 항법(navigation)은 기준좌표계에 대한 항체(vehicle)의 위치나 속도를 알아내기 위한 것으로 이를 위한 시스템이 관성항법장치(inertial navigation system-INS)이며 항법기능을 수행하기 위하여 항체에 놓여진 쎈서의 관성성질을 이용한다. INS는 specific force와 관성 각속도의 측정에서 얻은 데이타를 처리함으로 그 기능을 수행한다. 스트랩다운 INS(SINS)는 관성항법장치의 한 종류로 analytic INS라고도 하는데 기준좌표축을 유지하기 위하여 안정테이블을 사용하지 않고 쎈서들을 항체에 직접 부착시켜 초기상태와 현재상태와의 사이에 상대적인 회전방향을 해석적으로 계산한다. INS의 성능은 수많은 오차원(error source)의 함수로 주어지며 이 오차원 중에는 주위환경에 의한 것도 있고 INS 구성에 사용된 기구(instruments)와 관련된 것도 있다. INS 를 해석하는 목적은 항법의 정확도를 알아보는데 있으며 또한 각각의 오차원의 값을 추정하는 것도 부가적인 목적이 된다. 이러한 오차의 추정치는 사양(specification)을 모르는 부품의 성능을 식별하는데 사용될 수 있다. 따라서 INS를 해석함으로 INS를 구성하는 어떤 부품에 대한 성능이 어느정도 개선을 필요로 하는가 알 수 있다. 본 논문에서는 SINS의 오차원을 크게 고도계의 불확실성, 중력의 편향과 이상, 가속도계의 불확실성, 자이로의 불확실성의 네 그룹으로 나누어 상호분산해석(covariance analysis)방법으로 각 오차원이 시스템에 미치는 영향을 알아보았다.

  • PDF

Design and fabrication of a dynamically tuned gyroscope (DTG (Dynamically Tuned Gyroscope) 설계 및 제작)

  • 이장규;이장무;김원찬;이동녕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.519-521
    • /
    • 1987
  • Among the gyroscopes used for SDINS, the dynamically turned gyroscope (DTG) covers a wide dynamic range while it is simple and small. In addition, it is a two-degree-of freedom gyro; it can detect two-axis input simultaneously. DTG, since its development in 1970's, is widely accepted for strapdown inertial systems. In the first year, we have concentrated on developing a two degree-of-freedom DIG. An interdisciplinary research team has been formed to accomplish the first year objective. Five departments in the College of Engineering, Seoul National University are involved. They are; 1) Department of Control and Instrumentation, 2) Department of Mechanical Design and Production, 3) Department of Electrical Engineering, 4) Department of Electronic Engineering, and 5) Department of Metallurgical Engineering. In addition, the Department of Precision Mechanical Engineering of Pusan National University is subcontracted to develop a test procedure for gyroscope and SDINS. Gyroscope is a key sensor for SDINS. Furthermore gyroscope itself is used as a. independent sensor for vehicle guidance and control and fire control system. Gyroscope and SDINS are an important for defense, aeronautical, and space industries that Korea is and will be actively involved. Upon the success of the project, they are expected to be manufactured in Korea under a cooperative effort between university and industry.

  • PDF