• Title/Summary/Keyword: Storage Speed

Search Result 840, Processing Time 0.032 seconds

Radiation Damage by the Pool Fire of LNG Storage Tank (LNG 저장 탱크의 Pool Fire에 의한 복사열 피해)

  • Sohn Jung-Hwan;Hahn Yoon-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.14-22
    • /
    • 1998
  • In this work, in order to quantitatively predict the radiation flux and propose an idea about how to reduce the radiation damage, the radiation flux caused by pool fire of an LNG storage tank has been calculated using the RISC (Risk and Industrial Safety Consultant) proposed model under various conditions. Model predictions showed that the most important parameter affecting the radiation flux by the LNG pool fire is the wind speed. The extent of radiation damage to a target from fire flame was more significant with variation of wind speed at a low wind speed than with that at a high wind speed. It was found that the radiation damage by the former is substantially reduced with planting windbreak system around the plant. Since the windbreak is most economical than any other method, it is strongly suggested to plant a tree belt in the factory surroundings, especially near by the area of gas storage facilities, linking with water cooling and fire protection systems.

  • PDF

Performance Evaluation of a RAM based Storage System NGS

  • Kang, Yun-Hee;Kung, Jae-Ha;Cheong, Seung-Kook
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.75-80
    • /
    • 2009
  • Recently high-speed memory array based on RAM, which is a type of solid-state drive (SSD), has been introduced to handle the input/output (I/O) bottleneck. But there are only a few performance studies on RAM based SSD storage with regard to diverse workloads. In this paper, we focus on the file system for RAM based memory array based NGS (Next Generation Storage) system which is running on Linux operating system. Then we perform benchmark tests on practical file systems including Ext3, ReiserFS, XFS. The result shows XFS significantly outperforms other file systems in tests that represent the storage and data requests typically made by enterprise applications in many aspects. The experiment is used to design the dedicated file system for NGS system. The results presented here can help enterprises improve their performance significantly.

Development of the software for high speed data transfer of the high-speed, large capacity data archive system for the storage of the correlation data from Korea-Japan Joint VLBI Correlator (KJJVC)

  • Park, Sun-Youp;Kang, Yong-Woo;Roh, Duk-Gyoo;Oh, Se-Jin;Yeom, Jae-Hwan;Sohn, Bong-Won;Yukitoshi, Kanya;Byun, Do-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.37.2-37.2
    • /
    • 2008
  • Korea-Japan Joint VLBI Correlator (KJJVC), to be used for Korean VLBI Network (KVN) in Korea Astronomy & Space Science Institute (KASI), is a high-speed calculator that outputs the correlation results in the maximum speed of 1.4GB/sec.To receive and record this data keeping up with this speed and with no loss, the design of the software running on the data archive system for receving and recording the output data from the correlator is very important. But, the simple kind of programming using just single thread that receives data from network and records it by turns, can cause a bottleneck effect while processing high speed data and a probable data loss, and cannot utilize the merit of hardwares supporting multi core or hyper threading, or operating systems supporting these hardwares. In this talk we summarize the design of the data transfer software for KJJVC and high speed, large capacity data archive system using general socket programming and multi threading techniques, and the pre-BMT(Bench Marking Test) results from the tests of the storage product providers' proposals using this software.

  • PDF

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF

A Study on the Test Results and Implementation of Correlated Result Saving System using the Gluster File System (Gluster 파일시스템을 이용한 상관자료 수집 시스템 구축 및 시험고찰)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.53-60
    • /
    • 2016
  • In this paper, we introduce the implementation and test results of a new method of correlated result storage to achieve the full performance of the Daejeon hardware correlator. Recently, the observation of 8 Gbps speed, which is the maximum observational standard of KVN(Korean VLBI Network), has been performed. The correlation processing using the Daejeon hardware correlator is also required. Therefore, a new correlation result storage introduction has become necessary. The maximum correlation result output speed of the Daejeon hardware correlator is 1.4 GB/sec per 25.6 ms integration time. The conventional correlation result storage system can not cope with the maximum correlation output speed of the Daejeon hardware correlator, and the output speed is limited to 1/4. That is, among the four input ports of the Daejeon hardware correlator, the three inputs are limited to correspond to the observation rate of 1 Gbps. This new storage system uses the Gluster file system among many of the latest technologies used in storage systems. In tests that meet the maximum output rate of 1.4 GB/sec for the Daejeon hardware correlator, 350 MB/sec for each of the four optical outputs, resulting in 1.4 GB/sec in total.

KOREN based Domestic and International Verification Test of Mass Abyss Storage (대용량 Abyss Storage의 KOREN 네트워크 기반 국내 및 해외 실증 테스트)

  • Cha, ByungRae;Cha, YoonSeok;Choi, MyeongSoo;Park, Sun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • The trends in ICT are concentrated in IoT, Bigdata, and Cloud Computing. These mega-trends do not operate independently, and mass storage technology is essential as large computing technology is needed in the background to support them. In order to evaluate the performance of high-capacity storage based on open source Ceph, we carry out the demonstration test of Abyss Storage with domestic and overseas sites using educational network KOREN. In addition, storage media and network bonding are tested to evaluate the performance of the storage itself. Although there is a substantial difference in aspect of the physical speed among storage medias, there is no significant performance difference in the storage media test performed. As a solution to this problem, we could get performance improvement through network acceleration. In addition, we conducted actual performance test of Abyss Storage internal and external network by connecting domestic and overseas sites using KOREN network.

Investigation of the Hydrogen Storage Mechanism of Expanded Graphite by Measuring Electrical Resistance Changes

  • Im, Ji-Sun;Jang, Seung-Soon;Lee, Young-Seak
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3033-3038
    • /
    • 2012
  • The hydrogen storage mechanism of graphite was studied by measuring the electrical resistance change. Graphite was expanded and activated to allow for an easy hydrogen molecule approach and to enlarge the adsorption sites. A vanadium catalyst was simultaneously introduced on the graphite during the activation process. The hydrogen storage increased due to the effects of expansion, activation, and the catalyst. In addition, the electrical resistance of the prepared samples was measured during hydrogen molecule adsorption to investigate the hydrogen adsorption mechanism. It was found that the electrical resistance changed as a result of the easy hydrogen molecule approach, as well as of the adsorption process and the catalyst. It was also notable that the catalyst improved not only the hydrogen storage capacity but also the speed of hydrogen storage based on the response time. The hydrogen storage mechanism is suggested based on the effects of expansion, activation, and the catalyst.

Design and Test Flash-based Storage for Small Earth Observation Satellites (소형 지구 관측 위성용 플래시 기반 저장장치 설계 및 시험)

  • Baek, Inchul;Park, Hyoungsic;Hwang, Kiseon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.253-259
    • /
    • 2018
  • Recently, small satellite industries are rapidly changing. Demand for high performance small satellites is increasing with the expansion of Earth Observation Satellite market. A next-generation small satellites require a higher resolution image storage capacity than before. However, there is a problem that the HW configuration of the existing small satellite image storage device could not meet these requirements. The conventional data storing system uses SDRAM to store image data taken from satellites. When SDRAM is used in small satellite platform of a next generation, there is a problem that the cost of physical space is eight times higher and satellite price is two times higher than NAND Flash. Using the same satellite hardware configuration for next-generation satellites will increase the satellite volume to meet hardware requirements. Additional cost is required for structural design, environmental testing, and satellite launch due to increasing volume. Therefore, in order to construct a low-cost, high-efficiency system. This paper shows a next-generation solid state recorder unit (SSRU) using MRAM and NAND Flash instead of SDRAM. As a result of this research, next generation small satellite retain a storage size and weight and improves the data storage space by 15 times and the storage speed by 4.5 times compare to conventional design. Also reduced energy consumption by 96% compared to SDRAM based storage devices.

A Study on the Behavior of a Spinning Flexible Disk near a Curved Wall (곡률이 있는 벽면근처에서 고속회전하는 유연디스크의 거동 해석)

  • Lee, Ho-Ryul;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.201-207
    • /
    • 2006
  • Information storage devices have been studied to increase the storage capacity and the data transfer rate as well as to decrease the access time and their physical sizes. Optical information storage devices have been achieved high-capacity by reducing optical spot size remarkably due to the development of Blue-ray technology. Optical information storage devices usually use 1.2mm-thick polycarbonate(PC) media to get high enough stiffness. However, it would be better if we can decrease the thickness of a disk for achieving thinner device while keeping the capacity as large as possible. Decreasing the thickness of the storage media makes it difficult to read and write data because it increases the transverse vibration of the rotating disk due to the interaction with surrounding air and the vibration characteristics of thin flexible disk itself, Therefore, a special design based on the fluid mechanics is required to suppress the transverse vibration of the disk in non-contact manner so that the optical pickup can read/write data successfully. In this study, a curved wall is proposed as a stabilizer to suppress the transverse vibration of a $95{\mu}m$-thick PC disk. The characteristics of disk vibration due to a curved wall have been studied through numerical and experimental analysis from the fluid mechanics point of view. The proposed shapes are possible candidates as stabilizers to suppress the transverse vibration of a flexible disk which rotates at high speed.

  • PDF

Performance Evaluation of SSD-Index Maintenance Schemes in IR Applications

  • Jin, Du-Seok;Jung, Hoe-Kyung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.377-382
    • /
    • 2010
  • With the advent of flash memory based new storage device (SSD), there is considerable interest within the computer industry in using flash memory based storage devices for many different types of application. The dynamic index structure of large text collections has been a primary issue in the Information Retrieval Applications among them. Previous studies have proven the three approaches to be effective: In- Place, merge-based index structure and a combination of both. The above-mentioned strategies have been researched with the traditional storage device (HDD) which has a constraint on how keep the contiguity of dynamic data. However, in case of the new storage device, we don' have any constraint contiguity problems due to its low access latency time. But, although the new storage device has superiority such as low access latency and improved I/O throughput speeds, it is still not well suited for traditional dynamic index structures because of the poor random write throughput in practical systems. Therefore, using the experimental performance evaluation of various index maintenance schemes on the new storage device, we propose an efficient index structure for new storage device that improves significantly the index maintenance speed without degradation of query performance.