Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.9.3033

Investigation of the Hydrogen Storage Mechanism of Expanded Graphite by Measuring Electrical Resistance Changes  

Im, Ji-Sun (Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong)
Jang, Seung-Soon (School of Materials Science and Engineering, Georgia Institute of Technology)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Publication Information
Abstract
The hydrogen storage mechanism of graphite was studied by measuring the electrical resistance change. Graphite was expanded and activated to allow for an easy hydrogen molecule approach and to enlarge the adsorption sites. A vanadium catalyst was simultaneously introduced on the graphite during the activation process. The hydrogen storage increased due to the effects of expansion, activation, and the catalyst. In addition, the electrical resistance of the prepared samples was measured during hydrogen molecule adsorption to investigate the hydrogen adsorption mechanism. It was found that the electrical resistance changed as a result of the easy hydrogen molecule approach, as well as of the adsorption process and the catalyst. It was also notable that the catalyst improved not only the hydrogen storage capacity but also the speed of hydrogen storage based on the response time. The hydrogen storage mechanism is suggested based on the effects of expansion, activation, and the catalyst.
Keywords
Hydrogen storage; Mechanism; Electrical resistance; Graphite; Catalyst;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Pocsik, I.; Hundhausen, M.; Koos, M.; Ley, L. J. Non-Cryst. Solids 1998, 227-230, 1083.   DOI   ScienceOn
2 Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126.   DOI
3 Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095.   DOI   ScienceOn
4 Lee, H.; Kim, I. Y.; Han, S. S.; Bae, B. S.; Choi, M. K.; Yang, I. S. J. Appl. Phys. 2001, 90, 813.   DOI
5 Gupta, V.; Nakajima, T.; Ohzawa, Y.; Zemva, B. J. Fluorine Chem. 2003, 120, 143.   DOI
6 Gupta, V.; Nakajima, T.; Zemva, B. J. Fluorine Chem. 2001, 110, 145.   DOI
7 Lueking, A.; Yang, R. T. J. Catal. 2002, 206, 165.   DOI
8 Chen, C. H.; Huang, C. C. Micropor. Mesopor Mat. 2008, 109, 549.   DOI   ScienceOn
9 Lueking, A. D.; Yang, R. T. Appl. Catal. 2004, A 265, 259.
10 Im, J. S.; Park, S. J.; Lee, Y. S. Int. J. Hydrogen Energ. 2009, 34, 1423.   DOI   ScienceOn
11 Li, W.; Hoa, N. D.; Kim, D. Sens. Actuator B-Chem. 2010, 149, 184.   DOI
12 Im, J. S.; Kang, S. C.; Bai, B. C.; Bae, T. S.; In, S. J.; Jeong, E.; Lee, Y. S. Carbon 2011, 49, 2235.   DOI
13 Im, J. S.; Kang, S. C.; Lee, S. H.; Lee, Y. S. Carbon 2010, 48, 2573.   DOI
14 Wakeland, S.; Martinez, R.; Grey, J. K.; Luhrs, C. C. Carbon 2010, 48, 3463.   DOI
15 Ruth, U. P.; Francisco, C. M.; David, F. J.; Carlos, M. C. Micropor. Mesopor Mat. 2006, 92, 64.   DOI   ScienceOn
16 Armandi, M.; Bonelli, B.; Geobaldo, F.; Garrone, E. Micropor. Mesopor Mat. 2010, 132, 414.   DOI
17 Gorka, J.; Zawislak, A.; Choma, J.; Jaroniec, M. Appl. Surf. Sci. 2010, 256, 5187.   DOI
18 Castro, M. M.; Manuel, M. E.; Miguel, M. S.; Francisco, R. R. Carbon 2010, 48, 636.   DOI
19 Im, J. S.; Park, S. J.; Kim, T. J.; Kim, Y. H.; Lee, Y. S. J. Colloid Interf. Sci. 2008, 318, 42.   DOI   ScienceOn
20 Im, J. S.; Kwon, O.; Kim, Y. H.; Park, S. J.; Lee, Y. S. Micropor. Mesopor Mat. 2008, 115, 514.   DOI
21 Im, J. S.; Park, S. J.; Lee, Y. S. Mater. Res. Bull. 2009, 44, 1871.   DOI
22 Im, J. S.; Kang, S. C.; Bai, B. C.; Suh, J. K.; Lee, Y. S. Int. J. Hydrogen Energ. 2011, 36, 1560.   DOI
23 Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.   DOI
24 Kim, B. J.; Lee, Y. S.; Park, S. J. Int. J. Hydrogen Energ. 2008, 33, 2254.   DOI   ScienceOn
25 Kim, B. J.; Park, S. J. Int. J. Hydrogen Energ. 2011, 36, 648.   DOI
26 Kuchta, B.; Firlej, L.; Roszak, S.; Pfeifer, P. Adsorption 2010, 16, 413.   DOI
27 Zubkov, V. V.; Samsonov, V. M.; Grinev, I. V. J. Surf. Invest. 2012, 6, 49.   DOI
28 Fomkin, A. A.; Sinitsyn, V. A. Russ. Chem. Bull. 2009, 58, 706.   DOI
29 Chen, C. Y.; Chang, J. K.; Tsai, W. T. Int. J. Hydrogen Energ. 2012, 37, 3305.   DOI
30 Hardy, B.; Corgnale, C.; Chahine, R.; Richard, M. A.; Garrison, S.; Tamburello, D.; Cossement, D.; Anton, D. Int. J. Hydrogen Energ. 2012, 37, 5691.   DOI
31 Yoo, H. M.; Lee, S. Y.; Kim, B. J.; Park, S. J. Carbon Lett. 2011, 12, 112.   DOI
32 Bai, B. C.; Kim, J. G.; Naik, M.; Im, J. S.; Lee, Y. S. Carbon Lett. 2011, 12, 171.   DOI
33 Yang, S. J.; Jung, H.; Kim, T.; Im, J. H.; Park, C. R. Int. J. Hydrogen Energ. 2012, 37, 5777.   DOI
34 Sayed Ahmed, S. A.; Abo El-enin, R. M. M.; El-Nabarawy, Th. Carbon Lett. 2011, 12, 152.   DOI
35 Manocha, S.; Brahmbhatt, A. Carbon Lett. 2011, 12, 85.   DOI
36 Bai, B. C.; Kim, J. G.; Im, J. S.; Jung, S. C.; Lee, Y. S. Carbon Lett. 2011, 12, 236.   DOI   ScienceOn
37 Jimenez, V.; Ramirez-Lucas, A.; Sanchez, P.; Valverde, J. L.; Romero, A. Int. J. Hydrogen Energ. 2012, 37, 4144.   DOI   ScienceOn
38 Singh, P.; Kulkarni, M. V.; Gokhale, S. P.; Chikkali, S. H.; Kulkarni, C. V. Appl. Surf. Sci. 2012, 258, 3405.   DOI