
INTERNATIONAL JOURNAL OF KIMICS, VOL. 8, NO. 4, AUGUST 2010 377

Abstract— With the advent of flash memory based new
storage device (SSD), there is considerable interest
within the computer industry in using flash memory
based storage devices for many different types of
application. The dynamic index structure of large text
collections has been a primary issue in the Information
Retrieval Applications among them. Previous studies
have proven the three approaches to be effective: In-
Place, merge-based index structure and a combination
of both. The above-mentioned strategies have been
researched with the traditional storage device (HDD)
which has a constraint on how keep the contiguity of
dynamic data. However, in case of the new storage
device, we don’t have any constraint contiguity
problems due to its low access latency time. But,
although the new storage device has superiority such as
low access latency and improved I/O throughput speeds,
it is still not well suited for traditional dynamic index
structures because of the poor random write throughput
in practical systems. Therefore, using the experimental
performance evaluation of various index maintenance
schemes on the new storage device, we propose an
efficient index structure for new storage device that
improves significantly the index maintenance speed
without degradation of query performance.

Index Terms— SSD(Solid State Drive), Information

Retrieval, Performance evaluation, Index Maintenance.

I. INTRODUCTION

Flash-based storage devices are now considered to have

great potential as a new storage device that can be
substitute for magnetic disk in a diverse set of
applications, such as enterprise database server, mobile
personal computers and IR storage systems. It also might
seem natural to achieve much higher performance for all
the above applications but it is not, because new storage
devices have much different properties from
traditional magnetic disks. The key properties of SSD
device that directly influence a performance are
related to the method in which the device can be read

or written. In the SSD, a page can only be written
after erasing the entire block to which the page
belongs. Page write cost is typically higher than read,
and the block erase requirement makes writes even
more expensive. Furthermore, when a small sized
writes are requested in a random order we are more
significantly confronted with the problem that the
flash memory based device performs quite poorly.

In particular, since the previous strategies of
dynamic index maintenance has been researched with
the traditional magnetic storage device which has a
constraint on how keep the contiguity of dynamic data.
The existing schemes of index maintenance, which
has proven to be effective for the large text
collections in the IR applications, are not well suited
for the flash memory based new storage device. Thus,
to obtain the best attainable performance on SSD,
elaborate SSD-aware index structures and algorithms
of large text data collections are needed in practical
systems. In this paper, we evaluate the effect of
properties which influence on maintain index structure
and propose an efficient index structure for new storage
device.

II. RELATED WORKS

In this section we review the related works on the

techniques which were used extensively in the index
maintenance and the optimizing the random writes on
flash memory based storage.

A. Index Schemes in IR Applications

Inverted index structures [1],[2] have become the most
efficient data structure for high performance indexing of
large text collections, especially online index maintenance,
In-place and merge-based index structures are the two
main competing strategies for index construction in
dynamic search environments [3]. In the strategies, a
contiguity of posting information is the mainstay of
design for online index maintenance and query time.
During the merging events, the In-place and merge-based
strategies can either maintain each inverted list in a single
contiguous disk location, or to allow it occupy multiple,
discontiguous locations [4],[5].

The In-place update is an intuitive and very simple
index update strategy. Whenever a document is arrived to
the system, the posting list for each term is appended to

Performance Evaluation of SSD-Index Maintenance
Schemes in IR Applications

Du-Seok Jin, Hoe-Kyung Jung, Member, KIMICS

Manuscript received July 1, 2010; accepted July 1, 2010.
Du-Seok Jin is with the Department of Information Technology

Research, Korea Institute of Science and Technology Information,
Daejeon, 305-806, Korea (Email: dsjin@kisti.re.kr)

Hoe-Kyung Jung(Corresponding author) is with the Department of
Computer Engineering, Paichai University, Daejeon, 302-735, Korea
(Email: hkjung@pcu.ac.kr)

Du-Seok Jin, Heo-Kyung Jung : PERFORMANCE EVALUATION OF SSD-INDEX MAINTENANCE SCHEMES IN IR APPLICATION 378

the main index. In general this requires relocating existing
on-disk postings list for each term in a new document.
Here, since a new document will usually have hundreds of
unique terms, this kind of in-place update require
hundreds of time-consuming relocations of postings list in
the main index. The frequent relocations of postings list in
the main index will degrade the update performance
seriously. Overallocation of postings list – which leaves
some amount of free space after every postings list – in
the main index, is proposed to relieve these costly
operations. However, overallocation size is difficult to
predict in real databases and overallocation can be
degenerated into garbage if there is few update of addition
of documents, or falls into same situation of no-
overallocation after a huge amount of documents are
inserted hence filling over-allocated free spaces in the
posting list. Therefore we do not regard the overallocation
strategy in this experiment.

The Merge-based strategies were introduced for
incoming documents to reduce the relocation problem.
Whenever a new document is arrived, the indexing results
are appended to the auxiliary (in-memory) index rather
than to the main (on-disk) index. At initial state, the
auxiliary index is empty or small, hence new postings lists
from the incoming documents will be short and can be
easily inserted to the auxiliary index. However as new
documents are accumulated, postings lists in the auxiliary
index grow in size resulting in deteriorated performance
due to frequent relocations of grown postings lists.
Therefore, to be small enough auxiliary index, every
auxiliary postings list are merged into the main index or
the posting list which longer than a given threshold is
merged into the main index. This way, there is no postings
list longer than the given threshold and also the total size
of auxiliary index do not exceed the defined limits. As a
result, updating of postings lists for every unique term in a
document can be very small compared with the direct In-
place update index strategy.

B. Optimizing the random writes on SSD Storage

Flash-based storage devices are now becoming
available with price and performance characteristics and
these are considered to have tremendous potential as a
new storage medium that can replace magnetic disk for
enterprise database server. The new storage devices
have much different properties from traditional
magnetic disks. The key characteristics of SSD device
that directly influence the performance are related to
the method in which the device can be read or written.
All read and write operations are performed at page
granularity and a page can only be written after
erasing the entire block to which the page belongs.
Page write cost is typically higher than read, and the
block erase requirement makes writes even more
expensive. Especially small random writes, on the
device are inherently much slower than reads because
of the erase-before-write mechanism [6]. To avoid

performance degradation caused by this erase-before-
write limitation, The In-Page Logging (IPL) approach
that allows the changes made to a page are written (or
logged) to the database on the per-page basis, instead
of writing the page in its entirety was proposed [7]
and The BFTL was proposed to improve the inferior
random write performance [8]. However, BFTL
entails a high search cost since it accesses multiple
disk pages to search a single tree node. Furthermore,
the memory consumption is still high for large trees.
Flash DB was proposed to implement a self-tuning
scheme between standard B+-tree and BFTL under
various workloads on different flash SSDs [9].

III. DESIGN PROPERTIES OF INDEX

STRUCTURE ON SSD

There are several considerations in designing a
structure of index maintenance for retrieval system. The
appropriate indexing scheme and its configuration
parameters must be selected based on the new storage
device properties. In this section we discuss the design
properties that affect an index maintenance performance
on SSD.

A. Segmentation (Partitioning)

As inverted lists grow, if insufficient free space is
available to append new information at the end of the list,
the combined list is copied to a new location and the
original list is deleted. Most of the strategies based on In-
place updates have assumed that each posting lists have to
be in a contiguous part of the on-disk index. Keeping
posting lists in a contiguous part of the inverted file
maximizes query performance, but requires frequent
relocations of most lists in the index. Relocating inverted
lists means destroying the original ordering of the lists on
disk and also the disordered lists make update costs even
more expensive. To avoid this problem, researchers have
proposed a variety of different strategies based on In-
place scheme to updates index which is composed of a set
of index partitions. However, query performance degrades
with the number of index partitions because of processing
overhead associated with each partition. For these reasons,
many index maintenance studies indicating that the
merge-based approach is usually more efficient than in-
place update.

In contrast, if the index partitions were stored on an
SSD, the query performance would still maintain its
advantage on In-pace updates because the cost of a seek
time would drop to nearly zero and also keep its superior
performance of index maintenance. Consequently, the
principle property for the SSD to be available at the server
storage is that the index is divided into a number of
partitions. In other words, the presence of multiple
partitions for on-line index construction is faster than
methods based on a single partitioning, while the query

INTERNATIONAL JOURNAL OF KIMICS, VOL. 8, NO. 4, AUGUST 2010 379

performance is almost similar to that of single partition
approaches. Accordingly, we will examine the
effectiveness of multi-partitioning property in inverted
lists. Here, we refer to this property as the ‘segmentation’.

B.Merging Extent/Period

Merge-based update strategies share the common idea
that disk read/write operations are most efficient when
they are carried out in a sequential manner, minimizing
disk head movement. In merge-based strategies, recently
updated documents are typically gathered in-memory area
which is a subset of the indexed documents. Whenever
main memory is exhausted, the in-memory postings are
merged with the existing on-disk index. However, the
main problem of merge-based strategies is that whenever
main memory is exhausted, the entire on-disk index has to
be re-processed even though they have not been changed.
To overcome the shortcoming, Büttcher and Clarke and
Lester et al. have proposed [10],[11],[12] merge-based
update strategies that indexing efficiency is greatly
increased, while query processing performance remains
almost unchanged by allowing a controlled number of on-
disk indices to exist in parallel.

However, when the inverted index were stored on the
SSD, the advantage of merge-based strategy was an
insignificant matter because the cost of a seek time on
SSD would be nearly zero. Therefore, in this work, the
merging extent (what is value for a merging extent
selected?) and period (when is time for a merging period
selected?) are more important property than how to
optimize the merging methods. Accordingly, we evaluate
the performance of index maintenance using two kinds of
merging extents: the one is to be merged each posting list
between the same terms like a common merge method,
the other is to be merged as a single physical unit which
combined all posting lists in a merge index. In this paper,
we refer to the former as ‘Sot-merging’ and the latter as
‘Sod-merging’.

Fig. 1. The inverted index design properties for index

maintenance on SSD.

Another important design property of the merge-based

approach is a buffering scheme. In this paper, three kinds
of merging period’s schemes are explored: The first, when

the size of posting list of certain term is above the
predefined threshold, the posting list of term has to be
appended to the end of the term’s posting list of on-disk
index immediately. We refer to the approach as ‘T-
buffering’. The second is similar with general merge-
based approach but it has been composed of multi
segmentation which is referred as ‘D-buffering’. The last
is combined of ‘T-buffering’ and ‘D-buffering’. We refer
to this approach as ‘TD-buffering’. Those approaches
decrease the number of merging events.

C. Transactional Index Maintenance

Since most of the index maintenance strategies lack the
concept of integrity constraint, they have opportunities to
regard a block of new documents – for efficiency – as a
unit of index maintenance. However, to meet the field
requirements from database managers in text service area,
index maintenance should be supported in the on-disk
storage level, not in-memory. This means the logical unit
of index maintenance process should consist of each
document (not multiple documents) and its accompanying
index information. Furthermore, to support ACID
property of database systems, an IR system must support
logged processing of index maintenance. We have tested
the index maintenance strategies for per-document basis
regarding each document and its index as a transaction
unit.

For all experiments in this work, every change in index
data is logged to disk in per-document basis transaction
unit. If the transaction –i.e., insertion of a new document-
is successful, the log is discarded. On the other hand, if
the transaction fails for some reason, the log is used to
roll-back to the state of just before the transaction.

Figure 1 shows the inverted index structure with

segmented posting lists and an on-disk auxiliary index. In
addition, it depicts segment size (DF=3), merge extent
and merge period of posting lists. The black node means
new posting information which contains term frequency,
location and identifier of a document. As shown, initial
nodes were stored in the contiguous region but appended
nodes would be stored in the separated regions even same
term.

IV. PERFORMANCE EVALUATION

In this section we evaluate how well the index schemes

adapt with above mentioned properties on SSD. To
evaluate this, we experimented with the USA patent data,
and measured index maintenance times and querying
times for each properties within transactional environment.
Experiments were performed on a dual Pentium Xeon
3GHz machine with 8GB of memory and RAID-5 SCSI
storage and Intel-X25 80G SSD storage device.

Figure 2 shows an example patent item which consist
of Number(Patent number), Title, Pubdate(publish date),
Inventors, Assignee, Abstract and Claims.

Du-Seok Jin, Heo-Kyung Jung : PERFORMANCE EVALUATION OF SSD-INDEX MAINTENANCE SCHEMES IN IR APPLICATION 380

<us-patent>

<number> US-6981282 </pat-number>
<title> Systems and methods for transformable suits
</title>
<pub-date> 20060103 </pub-date>
<inventors>
 <name> Marty,Justin Douglas </name>
 <name> Pace,Joshua Craig </name>
</inventors>
<assignee> Z Gear, Inc. </assignee>
<abstract> Methods and systems for transforming a
volume of material into pant legs by means of a
transforming fastener. The transforming fastener has
multiple tracks, each track having a pair of matable
rows. …
</abstract>
<claims> 1. A system comprising: a volume of
material having a first formation wherein the volume
is substantially undivided by the material, …
2. The system of claim 1 wherein said second

formation comprises pant legs, said pant legs further
comprise inseams, and said tracks are coupled to the
inseams.…
</claims>

</us-patent>
Fig. 2. A sample data in USA patent collection.

Table 1 shows average term counts in every section in

the USA patent data collection. Remind that to keep the
lexicographical order of the terms in an inverted file,
usually a vocabulary data structure is separated from the
posting lists which have document identifiers with term
frequencies and exact locations in the documents. Now
refer to table 1 where a document contains more than one
sixteen hundreds terms, which means that addition of a
document should access the on-disk index more than two
times of the term frequency since the inverted index
should access two disk data structures – the vocabulary
list and posting list – for each term from the input
document.

TABLE I

BRIEF DATABASE SCHEMA AND STATISTICS OF
INDEX TERMS PER-DOCUMENT OF PATENT DATA

Field Data Type Index Type Total Terms/doc

Number char[20] index as is 1.0

Title string token 14.2

PubDate char[8] Index as is 1.0
Inventors string token 10.8

Assignee String token 3.57
Abstract string token 67.9

: : : :

Claims string token 626.9

SUM (90) fields 1601

For the segmentation strategies, we compared insert

times of pouring 35K documents with the single in-place
strategy and the segmentation in-place strategy. Each
point in Figure 3 was obtained by averaging insertion
times of every 1K insertions, to reduce the effects of the
biases in document lengths. In Figure 3, the upper line
indicates that an in-place scheme with a single
contiguous region for a long posting list and the bottom
line writes a long posting list into multiple
segmentations. For the experiment, document frequency
of 1000 was chosen for threshold of segmentation, since
it balances the trade-off between query processing and
index maintenance. As mentioned Section 3.A, Figure 3
shows non-segmentation index strategy is very poor
compared with segmentation approach. This mean a
single contiguous posting list is not feasible for even in
very small databases. On the other hand, segmentation
index strategy can improve the update efficiency.
Furthermore this strategy shows nearly stable
performance though many inserts are done.

Fig. 3. Insert times for 35,000 input documents on SSD.

For the merge extent and merge period, our

experiments were done by ‘Sot-merging’ and ‘Sod-
merging’ approach, respectively. The ‘Sot-merging’ was to
be merged each posting list between the same terms and
the ‘Sod-merging’ was to be merged as a single physical
unit which combined all posting lists in a merge index.
Figure 4 shows the result that ‘Sod-merging’ is faster than
‘Sot-merging’ to merge posting lists. But the query
performance of ‘Sod-merging’ is slightly slower than ‘Sot-
merging’ approach, since the pointers of each term’
posting list must be recomputed each time.

As mentioned Section 3.B, another important design
property of the merge-based approach is how open
executed the merging events. To evaluate the
characteristic, we experiment an impact of varying
buffering scheme with a buffering threshold (≈segment
size) on index maintenance times and querying times.

INTERNATIONAL JOURNAL OF KIMICS, VOL. 8, NO. 4, AUGUST 2010 381

Fig. 4. Merge times for 100,000 input documents on SSD.

Figure 5 shows that D-buffering significantly reduces

the time of index maintenance compared to T-buffering
approach. This is due to the decreasing number of
merging events. Figure 5 also shows that TD-buffering is
about two times faster than the T-buffering but slightly
slower than the D-buffering approach. However the query
times of TD-buffering and T-buffering are faster than D-
buffering approach, because T/TD-buffering approaches
have an advantage, like as distributed processing.

Fig. 5. Insert times for three buffering schemes on SSD.

Finally, we evaluate the query performance of four

different index maintenance schemes with two kinds of
devices. Several examples of the complex queries are
shown below.

 yellow* /N8 (polyurethane* OR urethane*)
 W silicon AND (optic* /N8 signal*) AND

module*
 W food* /N3 (wastewater* OR (waste /W1

water*)) AND treat*
 W ceramic* AND (bulletproof* OR (bullet /W1

proof*) OR (bullet /W1 resist*) OR (bullet* /N2
(protect* OR resist*)))

 wood* /N5 (substitut* OR replacement*)
 W (catalyst* OR catalyzer*) /N5 (regenerat*

OR ((precious OR valu* OR noble*) /N2
metal* /N5 recover*))

Figure 6 show that the query performance maintained a
constant speed for all methods when we used SSD. But,
the query performance with the HDD shows quite
different results according to the variation of index
methods, since various access latency times for each
method.

Fig.6. Search times for the input documents on SSD and

HDD

IV. CONCLUSIONS

The objective of this work is to evaluate flash
memory based storage device (SSD) as stable storage
for Information Retrieval Applications. In particular,
for the dynamic index maintenance, we identified
what is the property that strong effect on the
performance and how the property affects the
dynamic indexing schemes. To maximize the benefit
from the new technology, we also proposed an
efficient index structure for improved performance
based on SSD-index maintenance scheme.

REFERENCES

[1] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, Reading, MA, 1999.

[2] H. Witten, A. Moffat, C. Bell, Managing gigabytes: compressing
and indexing documents and images. Morgan Kaufmann, Los
Altos, CA 94022, USA, second edition, 1999.

[3] N. Lester, J. Zobel, and H. Williams, “In-place verse re-build verse
re-merge: Index maintenance strategies for text retrieval systems,”
Proc. CRPIT 27th Australasian Computer Science Conference pp.
15-23, 2004.

[4] E. Brown, J. Callan, and W. Croft, “Fast incremental indexing for
full-text information retrieval,” Proc. VLDB, pp. 192-202, Sep.
1994.

[5] H. Tomasic, Garcia-Molina, and K. Shoens, “Incremental updates
of inverted lists for text documents retrieval,” Proc. ACM
SIGMOD , pp. 289-300, May. 1994.

[6] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobbe,
“A Design for High-Performance Flash Disks,” Technical Report
MSR-TR-2005-176, Microsoft Research, Dec. 2005.

[7] Sang-Won Lee, and Bongki Moon, “Design of Flash-Based
DBMS: An In-Page Logging Approach,” Proc. ACM SIGMOD, pp.
55-66, Jun. 2007.

Du-Seok Jin, Heo-Kyung Jung : PERFORMANCE EVALUATION OF SSD-INDEX MAINTENANCE SCHEMES IN IR APPLICATION 382

[8] C. H. Wu, L. P. Chang, and T. W. Kuo, “An Efficient B-Tree
Layer for Flash-Memory Storage Systems,” Proc. RTCSA, pp. 409-
430, 2004.

[9] S Nath, and A Kansal, “FlashDB: Dynamic Self-tuning Database
for NAND Flash,” Proc. IPSN 6th Information Processing in
Sensor Networks Conference, Apr. 2007.

[10] N. Lester, A. Moffat, and J. Zobel, “Fast On-Line Index
Construction by Geometric Partitioning,” Proc. ACM CIKM, pp.
776-783, 2005.

[11] S. Buttcher, C.L.A. Clarke, and B. Lushman, “Hybrid index
maintenance for growing text collections,” Proc. ACM SIGMOD,
pp. 1-4, 2004.

[12] N. Lester, A. Moffat, and J. Zobel, “Efficient Online Index
Construction for Text Database,” ” ACM Trans. Database Systems,
vol. 33, no. 3, article 19, Aug. 2008.

Du-Seok Jin received the B. S. and M. S.
degrees in computer engineering from
Chonbuk National University, Korea in 1999
and 2001, respectively. Since 2001, he has
been worked as a researcher in the Korea
Institute of Science and Technology
Information. He is currently interested in
Information Retrieval System, Dynamic Index
Structure and Data Management

Hoe-Kyung Jung received B.S degree in 1987,
and Ph. D. degree in 1993, in the Department of
Computer Engineering from Kwangwoon
University, Korea. During 1994- 2005, he
worked for ETRI as Researcher. Since 1994, he
has worked in the department of Computer
Engineering at Paichai University where he
now works as a Professor. His current research
interests Multimedia Document Architecture
Modeling, Information Processing, Web

Services, Semantic Web, USN and MPEG-21.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

