• Title/Summary/Keyword: Stop Position Control

Search Result 63, Processing Time 0.029 seconds

A Position Control of BLDC Motor in a Rail Guided System for the Un-maned Facility Security (무인 설비 감시용 레일 가이드 구동장치에서 BLDC 전동기의 위치 제어)

  • Bae, Jong-Nam;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • A low-cost BLDC motor with hall sensor is used to drive the position control of a facility security monitoring system in this paper. Low measurable frequency of the hall sensor signal in low-speed regions results in difficulty in obtaining accurate speed detection and position control. To improve system control performance, we propose a variable gain of position controller and stop mode control scheme according to the motor speed and error position with pre-set deceleration time. The proposed stop mode control scheme is activated around the stop position to forcibly move the BLDC motor to the stop position in low speed. In the proposed stop mode, the motor current is controlled by the actual speed with the reference rotating angle. The control performance of the proposed position control is verified through experiments at the actual rail guided facility security monitoring system.

Sensorless Position Control of DC Motor for the Auxiliary Scaffolding (차량용 보조발판의 센서리스 직류전동기 위치 제어)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.389-395
    • /
    • 2019
  • This paper presents the sensorless position control of an auxiliary scaffolding step system for vehicles using DC motors. The designed auxiliary scaffolding step has a mechanical protector at the stop position. At this position, the scaffolding is forcibly stopped by the mechanical protector, and the motor current is dramatically increased to the stall current of the DC motor, thereby increasing the electrical damage. In this study, the estimated back EMF- and current model-based observers are proposed to estimate the motor speed and stop position. A simple V/F acceleration voltage pattern is used to operate the auxiliary scaffolding system. The estimated moving position is adopted to determine the stop position of the DC motor with the load current state. The operating current of the DC motor can be reduced by the estimated moving position and V/F acceleration pattern. At the stop position, the proposed sensorless position controller can smoothly stop the DC motor with the estimated moving position and reduced load current without any mechanical and electrical stress from the stall current from the mechanical protector. The proposed control scheme is verified by the comparison of simulations and experiments.

Velocity trajectory planning for the implementation of anti-swing crane (무진동 크레인 구현을 위한 속도경로설계 연구)

  • Yoon, Ji Sup;Park, Byung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.143-152
    • /
    • 1994
  • The velocity trajectory profile of trolley is designed to minimize both swinging while transportation of load and the stop position error at the final stop position. This profile is designed to be automatically programmed by the digital control algorithm when the length of chain and the desired travel distance are given as a priori. Also, to minimize both swinging and the stop position error the anti-swing controller which improves poor damping characteristics of the crane and the stop position controller are employed. The experimentalresults of sequential adaptation of the velocity trajectory profile and these two controllers show that this control scheme has excellent control performance as compared with that of the uncontrolled crane system.

  • PDF

Study on a New Method for Precise Stop Control of Metro Trains: In Case of Large Speed Error (도시철도 열차 정위치 정차제어의 새로운 방안에 대한 연구: 속도 오차가 큰 경우)

  • Kim, Jungtai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.591-598
    • /
    • 2021
  • One of the requirements of metro trains is to stop with precision to ensure that the train can stop precisely at the designated location on the platform. If this is not satisfied, interference with the screen door occurs, causing inconvenience to passengers and delays in operation. In the case of an automatic operated train, the current position is determined by the current speed information of the train, and control is performed by issuing an acceleration/deceleration command. Therefore, accurate control becomes impossible if the error of the speed information is large. In metro railroads, a Precision Stop Marker (PSM) is used to correct the position error, so that the error of stop control can be reduced by correcting the position error at a specific point. On the other hand, because the PSM itself has only position information, it does not compensate for the speed error. This paper proposes a method for performing in-place stop control by estimating the speed with the PSM progress information. The speed can be estimated when the train is operated at a constant deceleration speed, and the target deceleration can be obtained to perform stop control. The feasibility and excellence of the proposed method are shown through a numerical simulation.

Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty (자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어)

  • Sangyoon, Kim;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.

A study on the swing control using anti-swing orane (무진동 크레인을 이용한 흔들림 제어에 관한 연구)

  • 박병석;윤지섭;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.292-297
    • /
    • 1990
  • An anti-swing controller for an overhead crane in the stop position is designed. The developed anti-swing controller improves on the poor damping characteristics of overhead crane by feeding back the crane acceleration as a function of swing angular speed. The experimental results show that this crane using the proposed controller yields small stop position error and rapid damping response characteristics.

  • PDF

Position of Stop Line according to the Left Turn Trajectory at Intersection (교차로 좌회전 궤적에 따른 정지선 위치에 관한 연구)

  • 김기용;김동녕
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.29-39
    • /
    • 2000
  • Position of stop line according to left turn trajectory at intersections was studied. The Purpose of this study is to suggest a design guideline of left turn trajectory at intersections which is related to the Position of cross road stop line. Distance from the curb line to the stop line at each lane was calculated and discussed for various combination of road widths. Three design vehicle type and three control radii were considered. Setbacks of stop line from the curb line are Proportional to the control radius which depends on type of design vehicle. 8m, lim and 19m setback for control radius of 12m, 15m and 23m were calculated respectively as their maximum value. This result will be helpful to Paint the road marking on the Pavement which is usually difficult to fit to the designated radius. Field study of the effect of left turn trajectory on flow rate and safety was conducted. It was approved that improperly designed left turn trajectory decreases left turn capacity and increases conflicts among left turn flows of the adjacent lane.

  • PDF

An Introduction to Test Methods about Steam Valves of Steam Turbines in Power Plants (발전소 운전 중 증기터빈 밸브 시험 방식 소개)

  • Choi, In-Kyu;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1601-1602
    • /
    • 2007
  • Steam stop valves of steam turbine in the power plant are at their 100% position and have no movements. Steam control valves, ie governor valves have no movements either at their controlling position on load limit operation. By the way, if there were no change of operation state, steam valves could be sticked mechanically. Because the governor could fail in protecting and controlling steam turbine in case of emergency conditions, the closing test of 100% valve travel must be accomplished periodically for the purpose of testimony of their good conditions. And, As the difference between steam turbine structures exists according to the manufacturer or generation capacity, both steam stop valves and steam control valves differes in structure and operation method. Therefore, it is essential for not only turbine protection but also control for the control engineers to find out composition of steam valves and method of closing test.

  • PDF

무진동 크레인의 제어알고리즘 설계

  • 윤지섭;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.260-265
    • /
    • 1989
  • The micro-computer based automatic control of the overhead crane system is designed. Two control methodologies were suggested; the one is the anti-swing controller which improves poor damping characteristics of the crane and the other is the stop-position controller which minimizes the transportation position error. The input speed profile is automatically determined by the pre-programmed digital control algorithm. The experimental results show that these proposed controllers have excellent control performance as compared with those of the uncontrolled crane system.

  • PDF

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.