• 제목/요약/키워드: Stokes problems

검색결과 184건 처리시간 0.028초

Navier-Stokes 방정식 모형의 경사지게 입사하는 파랑 내부조파 (Directional Wave Generation in the Navier-Stokes Equations Using the Internal Wave Maker)

  • 하태민;남궁돈;조용식
    • 한국수자원학회논문집
    • /
    • 제45권6호
    • /
    • pp.545-555
    • /
    • 2012
  • 컴퓨터 기술의 발달과 더불어 수치해석을 이용한 파랑변형에 대한 연구는 꾸준히 발전하고 있으며 점점 중요한 역할을 수행하고 있다. 하지만 수치모형을 이용한 연구에는 다양한 문제점이 발생할 우려가 있는데, 그 중 가장 빈번하게 발생하는 문제 중의 하나가 파랑의 조파지점에서 발생하는 수치수조내로의 재반사 문제이다. 재반사를 막기 위한 방법으로는 내부조파 기법을 이용하는 것이 일반적이다. Navier-Stokes 방정식 모형에서는 질량 원천항을 이용한 내부조파 기법을 주로 사용해 왔으나, 기존의 연구는 대부분 연직 2차원 수치모형을 이용한 연구에 국한되어 있었다. 그러나 3차원 수치모형을 이용한 연구가 점차 활발해지면서 3차원 Navier-Stokes 방정식 모형의 내부조파 기법에 대한 필요성이 증대되고 있다. 최근 RANS(Reynolds averaged Navier-Stokes) 방정식 모형에서 Boussinesq 방정식의 운동량 원천항을 활용하여 파랑을 내부조파하는 기법이 발표되어 3차원 공간에서 경사지게 입사하는 파랑을 성공적으로 재현하였다. 본 연구에서는 LES(large eddy simulation) 기반의 3차원 Navier-Stokes 방정식 수치모형에 운동량 원천항을 이용한 내부조파 기법을 적용하여 목표파랑을 조파하고 해석해와 비교하여 이를 검증하였다.

수학적 이론을 이용한 이차원 곡면 덕트의 최적형상 설계 (Optimal Shape Design of a 2-D Curved Duct Using a Mathematical Theory)

  • 임석현;최해천
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1325-1334
    • /
    • 1998
  • The objectives of the present study are to develop a systematic method rather than a conventional trial-and-error method for an optimal shape design using a mathematical theory, and to apply it to engineering problems. In the present study, an optimal condition for a minimum pressure loss in a two-dimensional curved duct flow is derived and then an optimal shape of the curved duct is designed from the optimal condition. In the design procedure, one needs to solve the adjoint Navier-Stokes equations which are derived from the Navier-Stokes equations and the cost function. Therefore, a computer code of solving both the Navier-Stokes and adjoint Navier-Stokes equations together with an automatic grid generation is developed. In a curved duct flow, flow separation occurs due to an adverse pressure gradient, resulting in an additional pressure loss. Optimal shapes of a curved duct are obtained at three different Reynolds numbers of 100, 300 and 800, respectively. In the optimally shaped curved ducts, the separation region does not exist or is significantly reduced, and thus the pressure loss along the curved duct is significantly reduced.

MINIMAL LOCALLY STABILIZED Q1-Q0 SCHEMES FOR THE GENERALIZED STOKES PROBLEM

  • Chibani, Alima;Kechkar, Nasserdine
    • 대한수학회지
    • /
    • 제57권5호
    • /
    • pp.1239-1266
    • /
    • 2020
  • In this paper, some novel discrete formulations for stabilizing the mixed finite element method Q1-Q0 (bilinear velocity and constant pressure approximations) are introduced and discussed for the generalized Stokes problem. These are based on stabilizing discontinuous pressure approximations via local jump operators. The developing idea consists in a reduction of terms in the local jump formulation, introduced earlier, in such a way that stability and convergence properties are preserved. The computer implementation aspects and numerical evaluation of these stabilized discrete formulations are also considered. For illustrating the numerical performance of the proposed approaches and comparing the three versions of the local jump methods alongside with the global jump setting, some obtained results for two test generalized Stokes problems are presented. Numerical tests confirm the stability and accuracy characteristics of the resulting approximations.

Fractional-Step법을 이용한 비압축성 비정상 Navier-Stokes 방정식의 유한 요소해석 (Finite Element Analysis of Incompressible Transient Navier-Stokes Equation using Fractional-Step Methods)

  • 김형민;이신표
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.458-465
    • /
    • 2003
  • The main objective of the research is to develop a research code solving transient incompressible Navier-Stokes equation. In this research code, Adams-Bashforth method was applied to the convective terms of the navier stokes equation and the splitted equations were discretized spatially by finite element methods to solve the complex geometry problems easily. To reduce the divergence on the boundaries of pressure poisson equation due to the unsuitable pressure boundary conditions, multi step approximation pressure boundary conditions derived from the boundary linear momentum equations were used. Simulations of Lid Driven Flow and Flow over Cylinder were conducted to prove the accuracy by means of the comparison with results of the previous workers.

NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION

  • CHOI, YONGHO;JEONG, DARAE;LEE, SEUNGGYU;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권2호
    • /
    • pp.103-121
    • /
    • 2015
  • In this paper, we briefly review and describe a projection algorithm for numerically computing the two-dimensional time-dependent incompressible Navier-Stokes equation. The projection method, which was originally introduced by Alexandre Chorin [A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), pp. 745-762], is an effective numerical method for solving time-dependent incompressible fluid flow problems. The key advantage of the projection method is that we do not compute the momentum and the continuity equations at the same time, which is computationally difficult and costly. In the projection method, we compute an intermediate velocity vector field that is then projected onto divergence-free fields to recover the divergence-free velocity. Numerical solutions for flows inside a driven cavity are presented. We also provide the source code for the programs so that interested readers can modify the programs and adapt them for their own purposes.

ALGORITHMS TO APPLY FINITE ELEMENT DUAL SINGULAR FUNCTION METHOD FOR THE STOKES EQUATIONS INCLUDING CORNER SINGULARITIES

  • JANG, DEOK-KYU;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권2호
    • /
    • pp.115-138
    • /
    • 2019
  • The dual singular function method [DSFM] is a solver for corner sigulaity problem. We already construct DSFM in previous reserch to solve the Stokes equations including one singulairity at each reentrant corner, but we find out a crucial incorrection in the proof of well-posedness and regularity of dual singular function. The goal of this paper is to prove accuracy and well-posdness of DSFM for Stokes equations including two singulairities at each corner. We also introduce new applicable algorithms to slove multi-singulrarity problems in a complicated domain.

Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구 (A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME)

  • 조민우;양태호;권오준
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

저 Reynolds수 에 있어서의 원통주위의 흐름에 관한 연구 (A Study on the Flow around the Circular Cylinder at Low Reynolds Number)

  • 이은선;송강섭
    • 한국항해학회지
    • /
    • 제9권2호
    • /
    • pp.43-63
    • /
    • 1985
  • As a circular cylinder has a comparatively simple shape and becomes a basic problem for flows around other various shapes of bodies, the problem of two-dimensional viscous flow around the circular cylinder has been investigated, both theoretically and experimentally. But not a few problems are left unsolved. It is well known that the calculations are successfully made with the approximations of Stokes or Oseen for very low Reynolds numbers, but as Reynolds number is increased, Oseen's approximations as well as Stokes's ones become more and more remote from the exact solution of the Navier-Stokes equations. Therefore, in this paper, the authors transform the Navier-Stokes equations into the finite difference equations in the steady two-dimensional viscous flow at Reynolds number up to 45, and then solve the solution of the Navier-Stokes equations numerically. Also, the authors examine the accuracy of the solution by means of flow visualization with aluminum powder. The main results are as follows; (1) The critical Reynolds number at which twin vortices begin to form in the rear of the circular cylinder is found to be 6 in the experiment and 4 in the numerical solution. (2) As Reynolds number is increased, it is proved that the ratio of the length of the twin vortices to the diameter is grown almost linearly, both experimentally and numerically. (3) Separation angle is also increased according to reynolds number. But it is found that it would converge into 101.3 degrees, both experimentally and numerically.

  • PDF

PARALLEL ALGORITHMS FOR INTEGRATION OF NAVIER-STOKES EQUATIONS BASED ON THE ITERATIVE SPACE-MARCHING METHOD

  • Skurin Leonid I.
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.67-72
    • /
    • 2005
  • This research is based on the iterative space-marching method for incompressible and compressible Navier-Stokes equations[1-4]. A principle of parallel computational schemes construction for steady and unsteady problems is suggested. It is analytically proven that convergence of these schemes is unconditional for incompressible case. When the parallel scheme is used the total volume of computations is the sum of a large number of independent and equal parts. Estimation of the speed-up K shows that K > 1000 in ideal case. First results of using the parallel schemes are presented.

Hermite 3차, 4차 및 5차 유동함수에 의한 비압축성 유동계산 (INCOMPRESSIBLE FLOW COMPUTATIONS BY HERMITE CUBIC, QUARTIC AND QUINTIC STREAM FUNCTIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.49-55
    • /
    • 2009
  • This paper evaluates performances of a recently developed divergence-free finite element method based on Hermite interpolated stream functions. Velocity bases are derived from Hermite interpolated stream functions to form divergence-free basis functions. These velocity basis functions constitute a solenoidal function space, and the simple gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into a solenoidal and an irrotational parts, and the decoupled Navier-Stokes equations are projected onto their corresponding spaces to form proper variational formulations. To access accuracy and convergence of the present algorithm, three test problems are selected. They are lid-driven cavity flow, flow over a backward-facing step and buoyancy-driven flow within a square enclosure. Hermite interpolation functions from cubic to quintic are chosen to run the test problems. Numerical results are shown. In all cases it has shown that the present method has performed well in accuracies and convergences. Moreover, the present method does not require an upwinding or a stabilized term.

  • PDF