Browse > Article
http://dx.doi.org/10.4134/JKMS.j190628

MINIMAL LOCALLY STABILIZED Q1-Q0 SCHEMES FOR THE GENERALIZED STOKES PROBLEM  

Chibani, Alima (Department of Mathematics Faculty of Exact Sciences University Freres Mentouri)
Kechkar, Nasserdine (Department of Mathematics Faculty of Exact Sciences University Freres Mentouri)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.5, 2020 , pp. 1239-1266 More about this Journal
Abstract
In this paper, some novel discrete formulations for stabilizing the mixed finite element method Q1-Q0 (bilinear velocity and constant pressure approximations) are introduced and discussed for the generalized Stokes problem. These are based on stabilizing discontinuous pressure approximations via local jump operators. The developing idea consists in a reduction of terms in the local jump formulation, introduced earlier, in such a way that stability and convergence properties are preserved. The computer implementation aspects and numerical evaluation of these stabilized discrete formulations are also considered. For illustrating the numerical performance of the proposed approaches and comparing the three versions of the local jump methods alongside with the global jump setting, some obtained results for two test generalized Stokes problems are presented. Numerical tests confirm the stability and accuracy characteristics of the resulting approximations.
Keywords
Finite elements; mixed methods; generalized Stokes problem; stabilization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Ainsworth, G. R. Barrenechea, and A. Wachtel, Stabilization of high aspect ratio mixed finite elements for incompressible flow, SIAM J. Numer. Anal. 53 (2015), no. 2, 1107-1120. https://doi.org/10.1137/140972755   DOI
2 J. M. Boland and R. A. Nicolaides, On the stability of bilinear-constant velocity-pressure finite elements, Numer. Math. 44 (1984), no. 2, 219-222. https://doi.org/10.1007/BF01410106   DOI
3 J. M. Boland and R. A. Nicolaides, Stable and semistable low order finite elements for viscous flows, SIAM J. Numer. Anal. 22 (1985), no. 3, 474-492. https://doi.org/10.1137/0722028   DOI
4 F. Brezzi and J. Pitkaranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient solutions of elliptic systems (Kiel, 1984), 11-19, Notes Numer. Fluid Mech., 10, Friedr. Vieweg, Braunschweig, 1984. https://doi.org/10.1007/978-3-663-14169-3_2
5 E. Burman and P. Hansbo, A unified stabilized method for Stokes' and Darcy's equations, J. Comput. Appl. Math. 198 (2007), no. 1, 35-51. https://doi.org/10.1016/j.cam.2005.11.022   DOI
6 J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, Internat. J. Numer. Methods Fluids 8 (1988), no. 8, 869-895. https://doi.org/10.1002/fld.1650080802   DOI
7 Ph. Clement, Approximation by finite element functions using local regularization, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. 9 (1975), no. R-2, 77-84. https://doi.org/10.1051/m2an/197509R200771
8 M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. Rouge 7 (1973), no. R-3, 33-75. https://doi.org/10.1051/m2an/197307R300331
9 F. Ghadi, V. Ruas, and M. Wakrim, Finite element solution of a stream function-vorticity system and its application to the Navier Stokes equations, Appl. Math. 4 (2013), 257-262. http://dx.doi.org/10.4236/am.2013.41A039   DOI
10 H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. http://doi.org/10.1093/acprof:oso/9780199678792.001.0001
11 V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986. https://doi.org/10.1007/978-3-642-61623-5
12 Y. He, J. Li, and X. Yang, Two-level penalized finite element methods for the stationary Navier-Stoke equations, Int. J. Inf. Syst. Sci. 2 (2006), no. 1, 131-143. http://www.math.ualberta.ca/ijiss/SS-Volume-2-2006/No-1-06/SS-06-01-16.pdf
13 S. Hong, K. Kim, and S. Lee, Modified cross-grid finite elements for the Stokes problem, Appl. Math. Lett. 16 (2003), no. 1, 59-64. https://doi.org/10.1016/S0893-9659(02)00144-1   DOI
14 R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Griffiths, and M. Engelman, The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. II, Internat. J. Numer. Methods Fluids 1 (1981), no. 2, 171-204. https://doi.org/10.1002/fld.1650010206   DOI
15 T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg. 65 (1987), no. 1, 85-96. https://doi.org/10.1016/0045-7825(87)90184-8   DOI
16 N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (1992), no. 197, 1-10. https://doi.org/10.2307/2153016   DOI
17 J. Li, J. Wang, and X. Ye, Superconvergence by $L^2$-projections for stabilized finite element methods for the Stokes equations, Int. J. Numer. Anal. Model. 6 (2009), no. 4, 711-723. https://doi.org/10.1007/s11432-009-0036-6
18 K. Nafa, Improved local projection for the generalized Stokes problem, Adv. Appl. Math. Mech. 1 (2009), no. 6, 862-873. https://doi.org/10.4208/aamm.09-m09s07   DOI
19 R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths, The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. I, Internat. J. Numer. Methods Fluids 1 (1981), no. 1, 17-43. https://doi.org/10.1002/fld.1650010104   DOI
20 Y. Shang, A parallel finite element algorithm for simulation of the generalized Stokes problem, Bull. Korean Math. Soc. 53 (2016), no. 3, 853-874. https://doi.org/10.4134/BKMS.b150384   DOI
21 R. Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9-23. https://doi.org/10.2307/2007557   DOI
22 D. J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg. 79 (1990), no. 1, 71-86. https://doi.org/10.1016/0045-7825(90)90095-4   DOI