• Title/Summary/Keyword: Stokes' problem

Search Result 223, Processing Time 0.023 seconds

Numerical Study for Configuration Design in the Exhaust Gas Cooling System (배출가스 냉각장치 형상설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.7-12
    • /
    • 2016
  • This paper deals with a parametric study on cooling channel configurations to enhance the cooling effect. As a cooling effect has been increased, the exhaust gas by the plant from a manufacture is becoming deceased. To solve this problem, the design of a efficient cooling system is needed. In this paper, the cooling channel was analyzed to improve the cooling performance. The heat transfer rates depending on the number of baffle and the heiht of fin were obtained by using numerical simulation method. Three-dimensional Reynolds-averaged Naiver-Stokes equations were used to estimate flow and heat transfer in cooling channel, and the $k-{\varepsilon}$ model for turbulence closure was employed.

NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER (천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

Study on the direct approach to reinitialization in using level set method for simulating incompressible two-phase flows (비압축성 2 상유동의 모사를 위한 level set 방법에서의 reinitialization 직접 접근법에 관한 연구)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.568-571
    • /
    • 2008
  • The computation of moving interface by the level set method typically requires reinitializations of level set function. An inaccurate estimation of level set function ${\phi}$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, accurate and robust reinitialization process is essential to the free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates directly level set function ${\phi}$ using a normal vector in the interface without solving the re-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1splitting FEM are adopted to discretize advection equation of the level set function and the Navier-Stokes equation, respectively. Advection equation of free surface and re-initialization process are validated with benchmark problems, i.e., a broken dam flow and time-reversed single vortex flow. The simulation results are in good agreement with the existing results.

  • PDF

Unsteady cascade flow calculations of using dual time stepping and the k-$\omega$ turbulence model (이중시간전진법과 k-$\omega$ 난류모델을 이용한 익렬 내부 비정상 유동해석)

  • Choe, Chang-Ho;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1624-1634
    • /
    • 1997
  • A numerical study on two-dimensional unsteady transonic cascade flow has been performed by adopting dual time stepping and the k-.omega. turbulence model. An explicit 4 stage Runge-Kutta scheme for the compressible Navier-Stokes equations and an implicit Gauss-Seidel iteration scheme for the k-.omega. turbulence model are proposed for fictitious time stepping. This mixed time stepping scheme ensures the stability of numerical computation and exhibits a good convergence property with less computation time. Typical steady-state convergence accelerating schemes such as local time stepping, residual smoothing and multigrid combined with dual time stepping shows good convergence properties. Numerical results are presented for unsteady laminar flow past a cylinder and turbulent shock buffeting problem for bicircular arc cascade flow is discussed.

Gas Flow through Arrays of Spheres Coated by Liquid Film (액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2009
  • Present study deals with a three phase flow problem of determining drag acting on spheres wetted by liquid flow by gas flow through the spheres in simple cubic (SC), body-center cubic (BCC) and face-centered cubic (FCC) array, respectively, when the inertia of gas is negligibly small. The liquid flow driven by gravity on the spheres is assumed to be unaffected by the countercurrent gas flow. A perturbation method coupled with a multipole expansion method is used to calculate the hydrodynamic interactions between spheres and hence determine the effect of liquid film and flow on the gas flow for each periodic array of spheres. An approximate method for evaluating the effect of the liquid film is also presented for simple estimations. It is found that the approximation results are in a reasonable agreement with the numerical calculations.

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures (Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析))

  • Y.C.,Kim;I.S.,Nho;S.W.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF

Fluid flow profile in the "orthotropic plate+compressible viscous fluid+rigid wall" system under the action of the moving load on the plate

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-309
    • /
    • 2020
  • The paper studies the fluid flow profile contained between the orthotropic plate and rigid wall under the action of the moving load on the plate and main attention is focused on the fluid velocity profile in the load moving direction. It is assumed that the plate material is orthotropic one and the fluid is viscous and barotropic compressible. The plane-strain state in the plate and the plane flow of the fluid is considered. The motion of the plate is described by utilizing the exact equations of elastodynamics for anisotropic bodies, however, the flow of the fluid by utilizing the linearized Navier-Stokes equations. For the solution of the corresponding boundary value problem, the moving coordinate system associated with the moving load is introduced, after which the exponential Fourier transformation is employed with respect to the coordinate which indicates the distance of the material points from the moving load. The exact analytical expressions for the Fourier transforms of the sought values are obtained, the originals of which are determined numerically. Presented numerical results and their analyses are focused on the question of how the moving load acting on the face plane of the plate which is not in the contact with the fluid can cause the fluid flow and what type profile has this flow along the thickness direction of the strip filled by the fluid and, finally, how this profile changes ahead and behind with the distance of the moving load.

Study on the Solution of Reinitialization Equation for Level Set Method in the Simulation of Incompressible Two-Phase Flows (비압축성 2 상유동의 모사를 위한 Level Set 방법의 Reinitialization 방정식의 해법에 관한 연구)

  • Cho, Myung-Hwan;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.754-760
    • /
    • 2008
  • Computation of moving interface by the level set method typically requires the reinitialization of level set function. An inaccurate estimation of level set function $\phi$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, an accurate and robust reinitialization process is essential to the simulation of free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates level set function directly using a normal vector on the interface without solving there-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1 splitting/SUPG (Streamline Upwind Petrov-Galerkin) FEM are adopted to discretize advection equation of the level set function and the incompressible Navier-Stokes equation, respectively. Advection equation and re-initialization process of free surface capturing are validated with benchmark problems, i.e., a broken dam flow and timereversed single vortex flow. The simulation results are in good agreement with the existing results.