1 |
Bagno, A.M. (2015), "The dispersion spectrum of wave process in a system consisting of an ideal fluid layer and compressible elastic layer", Int. Appl. Mech., 51(6), 52-60. https://doi.org/10.1007/s10778-015-0721-7.
DOI
|
2 |
Bagno, A.M. and Guz, A.N. (1997), "Elastic waves in prestressed bodies interacting with fluid (Survey)", Int. Appl. Mech., 33(6), 435-465. https://doi.org/10.1007/BF02700652.
DOI
|
3 |
Bagno, A.M., Guz, A.N. and Shchuruk, G.I. (1994), "Influence of fluid viscosity on waves in an initially deformed compressible elastic layer interacting with a fluid medium", Int. Appl. Mech., 30(9), 643-649. https://doi.org/10.1007/BF00847075.
DOI
|
4 |
Das, H.N. and Kapuria, S. (2016), "On the use of bend-twist coupling in full-scale composite marine propellers for improving hydrodynamic performance", J. Fluid. Struct., 61, 132-153. https://doi.org/10.1016/j.jfluidstructs.2015.11.008.
DOI
|
5 |
Fu, S., Cui, W., Chen, X. and Wang, C. (2005), "Hydroelastic analysis of a nonlinearity connected floating bridge subjected to moving loads", Marine Struct., 18, 85-107. https://doi.org/10.1016/j.marstruc.2005.05.001.
DOI
|
6 |
Gagani, A.I. and Echtermeyer, A.T. (2019), "Influence of delaminations on fluid diffusion in multidirectional composite laminates-Theory and experiments", Int. J. Solid. Struct., 158, 232-242. https://doi.org/10.1016/j.ijsolstr.2018.09.009.
DOI
|
7 |
Guz, A.N. (2009), Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers.
|
8 |
Guz, A.N., Zhuk, A.P. and Bagno, A.M. (2016), "Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (Review)", Int. Appl. Mech., 52(5), 449-507. https://doi.org/10.1007/s10778-016-0770-6.
DOI
|
9 |
Jeong, K.H. and Kim, K.J. (2005), "Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid", J. Sound Vib., 283, 153-172. https://doi.org/10.1016/j.jsv.2004.04.029.
DOI
|
10 |
Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Coupl. Syst. Mech., 7(6), 649-668. https://doi.org/10.12989/csm.2018.7.6.649.
DOI
|
11 |
Kaneko, S., Hong, G., Mitsume, N., Yamada, T. and Yoshimura, S. (2018), "Numerical study of active control by piezoelectric materials for fluid-structure interaction problems", J. Sound Vib., 435, 23-35. https://doi.org/10.1016/j.jsv.2018.07.044.
DOI
|
12 |
Kwak, M.K. (1997), "Hydroelastic vibration of circular plates (Fourier-Bessel series approach)", J. Sound Vib., 201,.293-303. https://doi.org/10.1006/jsvi.1996.0775.
DOI
|
13 |
Kelvani, A., Shooshtar, A. and Sani, A.A. (2013), "A closed form solution for fluid structure system: Shear-beam-compressible fluid", Coupl. Syst. Mech., 2(2), 127-146. https://doi.org/10.12989/csm.2013.2.2.127.
DOI
|
14 |
Kozlovsky, Y. (2009), "Vibration of plates in contact with viscous fluid: Extension of Lamb's model", J. Sound Vib., 326, 332-339. https://doi.org/10.1016/j.jsv.2009.04.031.
DOI
|
15 |
Kwak, H. and Kim, K. (1991), "Axisymmetric vibration of circular plates in contact with water", J. Sound Vib., 146, 381-216. https://doi.org/10.1016/0022-460X(91)90696-H.
DOI
|
16 |
Kwak, M.K. and Han. S.B. (2000), "Effect of fluid depth on the hydroelastic vibration of free-edge circular plate", J. Sound Vib., 230(1), 171-125. https://doi.org/10.1006/jsvi.1999.2608.
DOI
|
17 |
Lamb, H. (1921), "Axisymmetric vibration of circular plates in contact with water", Proc. R Soc. (London) AV, 98, 205-216.
|
18 |
Schiffer, A. and Tagarielli, V.L. (2015), "The response of circular composite plates to underwater blast: Experiments and modelling", J. Fluid. Struct., 52, 130-144. https://doi.org/10.1016/j.jfluidstructs.2014.10.009.
DOI
|
19 |
Mandal, K.K. and Maity, D. (2015), "2d finite element analysis of rectangular water tank with separator wall using direct coupling", Coupl. Syst. Mech., 4(4), 317-336. https://doi.org/10.12989/csm.2013.2.2.127.
DOI
|
20 |
McLachlan, N.W. (1932), "The accession to inertia of flexible discs vibrating in a fluid", Proc. Phys. Soc. London, 44, 546-555.
DOI
|
21 |
Sorokin, S.V. and Chubinskij, A.V. (2008), "On the role of fluid viscosity in wave propagation in elastic plates under heavy fluid loading", J. Sound Vib., 311, 1020-1038. https://doi.org/10.1016/j.jsv.2007.10.001.
DOI
|
22 |
Akbarov, S.D. and Ismailov, M.I. (2014), "Forced vibration of a system consisting of a pre-strained highly elastic plate under compressible viscous fluid loading", CMES: Comput. Model. Eng. Sci., 97(4), 359-390. https://doi.org/10.3970/cmes.2014.097.359.
|
23 |
Wang, C., Fu, S. and Cui, W. (2009), "Hydroelasticity based fatigue assessment of the connector for a ribbon bridge subjected to a moving load", Marine Struct., 22, 246-260. https://doi.org/10.1016/j.marstruc.2008.06.009.
DOI
|
24 |
Wu, J.S. and Shih, P.Y. (1998), "Moving-load-induced vibrations of a moored floating bridge", Comput. Struct., 66(4), 435-461. https://doi.org/10.1016/S0045-7949(97)00072-2.
DOI
|
25 |
Akbarov, S.D. (2015), Dynamics of Pre-strained Bi-material Elastic Systems: Linearized Three-Dimensional Approach, Springer, New York, USA.
|
26 |
Akbarov, S.D. (2018), "Forced vibration of the hydro-viscoelastic and-elastic systems consisting of the viscoelastic or elastic plate, compressible viscous fluid and rigid wall: a review", Appl. Comput. Math., 17(3), 221-245.
|
27 |
Akbarov, S.D. and Huseynova, T.V. (2019), "Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall", Coupl. Syst. Mech., 8(3), 199-218. https://doi.org/10.12989/csm.2019.8.3.199.
DOI
|
28 |
Akbarov, S.D. and Ismailov, M.I. (2015), "Dynamics of the moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall", CMC: Comput. Mater. Continua, 45(2), 75-10. https://doi.org/10.3970/cmc.2015.045.075.
|
29 |
Akbarov, S.D. and Ismailov, M.I. (2016), "Frequency response of a pre-stressed metal elastic plate under compressible viscous fluid loading", Appl. Comput. Math., 15(2), 172-188.
|
30 |
Akbarov, S.D. and Ismailov, M.I. (2017), "The forced vibration of the system consisting of an elastic plate, compressible viscous fluid and rigid wall", J. Vib. Control, 23(11), 1809-1827. https://doi.org/10.1177/1077546315601299.
DOI
|
31 |
Amabili, M. (1996), "Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates", J. Sound Vib., 193, 909-925. https://doi.org/10.1006/jsvi.1996.0322.
DOI
|
32 |
Akbarov, S.D. and Ismailov, M.I. (2018), "The influence of the rheological parameters of a hydro-viscoelastic system consisting of a viscoelastic plate, viscous fluid and rigid wall on the frequency response of this system", J. Vib. Control, 24(7), 1341-1363. https://doi.org/10.1177/1077546316660029.
DOI
|
33 |
Akbarov, S.D. and Panakhli, P.G. (2017), "On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall", Coupl. Syst. Mech., 6(3), 287-316. https://doi.org/10.12989/csm.2017.6.3.287.
DOI
|
34 |
Akbarov, S.D., Ismailov, M.I. and Aliyev, S.A. (2017) "The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall", Coupl. Syst. Mech., 6(4), 287-316. https://doi.org/10.12989/csm.2017.6.4.439.
|
35 |
Amabili, M. and Kwak, M.K. (1996), "Free vibrations of circular plates coupled with liquids: revising the Lamb problem", J. Fluid. Struct., 7, 743-761. https://doi.org/10.1006/jfls.1996.0051.
DOI
|
36 |
Atkinson, C. and Manrique de Lara, M. (2007), "The frequency response of a rectangular cantilever plate vibrating in a viscous fluid", J. Sound Vib., 300, 352-367. https://doi.org/10.1016/j.jsv.2006.08.011.
DOI
|