• Title/Summary/Keyword: Stochastic Learning

Search Result 143, Processing Time 0.02 seconds

Landmark based Localization System of Mobile Robots Considering Blind Spots (사각지대를 고려한 이동로봇의 인공표식기반 위치추정시스템)

  • Heo, Dong-Hyeog;Park, Tae-Hyoung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.156-164
    • /
    • 2011
  • This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.

The Robust Control of Robot Manipulator using Adaptive-Neuro Control Method (적응-뉴럴 제어 기법에 의한 로보트 매니퓰레이터의 견실 제어)

  • 차보남;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.262-266
    • /
    • 1995
  • This paper presents a new adaptive-neuro control scheme to control the velocity and position of SCARA robot with parameter uncertainties. The adaptive control of linear system found wiedly in many areas of control application. While techniques for the adaptive control of linear systems have been well-established in the literature, there are a few corresponding techniques for nonlinear systems. In this paper an attempt is made to present a newcontrol scheme for theadaptive control of ponlinear robot based on a feedforward neural network. The proposed approach incorporates a neuro controller used within a reinforcement learning framework, which reduces the problem to one of learning a stochastic approximation of an unknown average error surface Emphasis is focused on the fact that the adaptive-neuro controoler dose not need any input/output information about the controlled system. The simulation result illustrates the effectiveness of the proposed adaptive-neuro control scheme.

  • PDF

Classification of PD Signals Generated in Solid Dielectrics by Neural Networks (모의결함을 갖는 고체절연재에서 발생하는 부분방전 및 패턴분류)

  • Park, S.H.;Lee, K.W.;Park, J.Y.;Kang, S.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1876-1878
    • /
    • 2003
  • The recognition of PD(Partial Discharge) phenomenon is useful for classification of defects. The distribution of stochastic parameters which consisted of those PD pulses data and pulses train can show discriminable characteristics of PD sources. But it is not sufficient to discriminate among to PD sources. In this paper, we suggests that classification method of PD source by NN(Neural Networks) are good tools for differentiate of those. The learning scheme of NN is (Back Propagation learning algorithm(BP).

  • PDF

A Study on Dynamic Modeling of Photovoltaic Power Generator Systems using Probability and Statistics Theories (확률 및 통계이론 기반 태양광 발전 시스템의 동적 모델링에 관한 연구)

  • Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1007-1013
    • /
    • 2012
  • Modeling of photovoltaic power systems is significant to analytically predict its dynamics in practical applications. This paper presents a novel modeling algorithm of such system by using probability and statistic theories. We first establish a linear model basically composed of Fourier parameter sets for mapping the input/output variable of photovoltaic systems. The proposed model includes solar irradiation and ambient temperature of photovoltaic modules as an input vector and the inverter power output is estimated sequentially. We deal with these measurements as random variables and derive a parameter learning algorithm of the model in terms of statistics. Our learning algorithm requires computation of an expectation and joint expectation against solar irradiation and ambient temperature, which are analytically solved from the integral calculus. For testing the proposed modeling algorithm, we utilize realistic measurement data sets obtained from the Seokwang Solar power plant in Youngcheon, Korea. We demonstrate reliability and superiority of the proposed photovoltaic system model by observing error signals between a practical system output and its estimation.

Ensemble variable selection using genetic algorithm

  • Seogyoung, Lee;Martin Seunghwan, Yang;Jongkyeong, Kang;Seung Jun, Shin
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.629-640
    • /
    • 2022
  • Variable selection is one of the most crucial tasks in supervised learning, such as regression and classification. The best subset selection is straightforward and optimal but not practically applicable unless the number of predictors is small. In this article, we propose directly solving the best subset selection via the genetic algorithm (GA), a popular stochastic optimization algorithm based on the principle of Darwinian evolution. To further improve the variable selection performance, we propose to run multiple GA to solve the best subset selection and then synthesize the results, which we call ensemble GA (EGA). The EGA significantly improves variable selection performance. In addition, the proposed method is essentially the best subset selection and hence applicable to a variety of models with different selection criteria. We compare the proposed EGA to existing variable selection methods under various models, including linear regression, Poisson regression, and Cox regression for survival data. Both simulation and real data analysis demonstrate the promising performance of the proposed method.

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

A Channel Management Technique using Neural Networks in Wireless Networks (신경망를 이용한 무선망에서의 채널 관리 기법)

  • Ro Cheul-Woo;Kim Kyung-Min;Lee Kwang-Eui;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.115-119
    • /
    • 2006
  • The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel alteration model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRN model. The numerical results show that the difference between the value of g by backpropagation and that value by SRN model is ignorable.

  • PDF

Regularized Optimization of Collaborative Filtering for Recommander System based on Big Data (빅데이터 기반 추천시스템을 위한 협업필터링의 최적화 규제)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.87-92
    • /
    • 2021
  • Bias, variance, error and learning are important factors for performance in modeling a big data based recommendation system. The recommendation model in this system must reduce complexity while maintaining the explanatory diagram. In addition, the sparsity of the dataset and the prediction of the system are more likely to be inversely proportional to each other. Therefore, a product recommendation model has been proposed through learning the similarity between products by using a factorization method of the sparsity of the dataset. In this paper, the generalization ability of the model is improved by applying the max-norm regularization as an optimization method for the loss function of this model. The solution is to apply a stochastic projection gradient descent method that projects a gradient. The sparser data became, it was confirmed that the propsed regularization method was relatively effective compared to the existing method through lots of experiment.

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

Corpus-Based Ambiguity-Driven Learning of Context- Dependent Lexical Rules for Part-of-Speech Tagging (품사태킹을 위한 어휘문맥 의존규칙의 말뭉치기반 중의성주도 학습)

  • 이상주;류원호;김진동;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.178-178
    • /
    • 1999
  • Most stochastic taggers can not resolve some morphological ambiguities that can be resolved only by referring to lexical contexts because they use only contextual probabilities based ontag n-grams and lexical probabilities. Existing lexical rules are effective for resolving such ambiguitiesbecause they can refer to lexical contexts. However, they have two limitations. One is that humanexperts tend to make erroneous rules because they are deterministic rules. Another is that it is hardand time-consuming to acquire rules because they should be manually acquired. In this paper, wepropose context-dependent lexical rules, which are lexical rules based on the statistics of a taggedcorpus, and an ambiguity-driven teaming method, which is the method of automatically acquiring theproposed rules from a tagged corpus. By using the proposed rules, the proposed tagger can partiallyannotate an unseen corpus with high accuracy because it is a kind of memorizing tagger that canannotate a training corpus with 100% accuracy. So, the proposed tagger is useful to improve theaccuracy of a stochastic tagger. And also, it is effectively used for detecting and correcting taggingerrors in a manually tagged corpus. Moreover, the experimental results show that the proposed methodis also effective for English part-of-speech tagging.