DOI QR코드

DOI QR Code

Landmark based Localization System of Mobile Robots Considering Blind Spots

사각지대를 고려한 이동로봇의 인공표식기반 위치추정시스템

  • Received : 2010.12.17
  • Accepted : 2011.02.28
  • Published : 2011.05.31

Abstract

This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.

Keywords

References

  1. J. Guivant, E. Nebot, S. Baiker, "Autonomous navigation and map building using laser range sensors in outdoor application", Journal of Robotic Systems, Vol.17, No.10, pp.565-583, 2000. https://doi.org/10.1002/1097-4563(200010)17:10<565::AID-ROB4>3.0.CO;2-6
  2. M. Drumheller, "Mobile robot localization using sonar", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.9, No.2, pp.325-332, 1987.
  3. M. Betke, L. Gurvits, "Mobile robot localization using landmark", IEEE Trans. on Robotics and Automation, Vol. 13, No.2, pp.251-263, 1997. https://doi.org/10.1109/70.563647
  4. T. H. Lee, J. Y. Shin, D. I. Cho, "Position estimation for mobile robot using In-plane 3-Axis IMU and active beacon", IEEE Int. Symp. on Industrial Electronics, pp. 1956-1961, 2009.
  5. T. Abdelazim, W. Abdel-Hamid, N. El-Sheimy, E. H. Shin, "Experiment results of an adaptive fuzzy network kalman filtering integration for low cost navigation application", Proc. NAFIS-04, Banff, AB, Canada, pp.231-236, 2004.
  6. P. Goel, S. I. Roumeliotis, G. S. Sukhatme, "Robust localization using relative and absolute position estimates", Proc. of the 1999 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1999.
  7. M. Begum, G. K. I. Mann, R. G. Gosine, "Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots", Applied Soft Computing, Vol.8, pp.150-165, 2008. https://doi.org/10.1016/j.asoc.2006.11.010
  8. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, S. Thrun, J. C. Latombe, Principles of Robot Motion, MIT Press, 2005.
  9. J. Borenstein, L. Feng, "Measurment and correction of systematic odometry errors in mobile robots", IEEE Trans. Robotics and Automation, Vol.12, No.6, pp.869-880, 1996. https://doi.org/10.1109/70.544770
  10. S. Nassar, "Improving the inertial navigation system error model for INS and INS/GPS application", Ph. D. dissertation, Univ. of Calgary, 2003.
  11. H. Chung, L. Ojeda, J. Borenstein, "Sensor fusion for mobile robot dead-reckoning with precision-calibrated fiber optic gyroscope", IEEE Int. Conf. on Robotics and Automation. pp.3588-3593, 2001.
  12. C. K. Chui, G. Chen, Kalman Filtering with Real-time Applications, Springer Verlag, 1998.
  13. H. Carvalho, P. Del Moral, A. Monn, G. Salut, "Optimal nonlinear filter in GPS/INS Integration", IEEE Trans. on Aerospace and Electronic Systems, Vol.33, No.3, pp. 835-850, 1997. https://doi.org/10.1109/7.599254
  14. R. Sharaf, A. Noureldin, "Sensor integration for satellitebased vehicular navigation using neural networks", IEEE Trans. on Neural Networks, Vol.18, No.2, pp.589-594, 2007. https://doi.org/10.1109/TNN.2006.890811
  15. J.S.R.Jang, "ANFIS: adaptive-network-based fuzzy inference systems," IEEE Trans. on Systems, Man, and Cybernetics, Vol.23, No.3, pp.665-685, 1993. https://doi.org/10.1109/21.256541