A Channel Management Technique using Neural Networks in Wireless Networks

신경망를 이용한 무선망에서의 채널 관리 기법

  • Published : 2006.05.01

Abstract

The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel alteration model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRN model. The numerical results show that the difference between the value of g by backpropagation and that value by SRN model is ignorable.

채널은 무선망에 있어서 한정된 주요 자원 중의 하나이다. 다양한 채널 관리 기법들이 제시되어 왔으며, 최근 들어 가드채널의 최적화 문제가 부각되고 있다. 본 논문에서는 신경망을 이용한 지능적인 채널 관리 기법을 제안한다. 신경망의 학습 데이터 생성과 성능분석을 위하여 SRN(Stochastic Reward Net) 채널 할당 모델이 개발된다. 제안된 기법에서 신경망은 지도학습 방법인 역전파 알고리즘을 이용하여 최적의 가드채널 값 g를 계산하도록 학습한다. 학습된 신경망을 이용하여 최적의 g를 계산하고, 이를 SRN모델에서 구해진 결과와 비교한다. 실험결과는 신경망에서 구한 가드채널 수와 SRN 모델로부터 구한 가드채널 수의 상대적 차이가 없음을 보여준다.

Keywords