• Title/Summary/Keyword: Stiffness of frame

Search Result 849, Processing Time 0.023 seconds

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

Lagrangian Formulation of a Geometrically Exact Nonlinear Frame-Cable Element (기하 비선형성을 엄밀히 고려한 비선형 프레임-케이블요소의 정식화)

  • Jung, Myung-Rag;Min, Dong-Ju;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • Two nonlinear frame elements taking into account geometric nonlinearity is presented and compared based on the Lagrangian co-rotational formulation. The first frame element is believed to be geometrically-exact because not only tangent stiffness matrices is exactly evaluated including stiffness matrices due to initial deformation but also total member forces are directly determined from total deformations in the deformed state. Particularly two exact tangent stiffness matrices based on total Lagrangian and updated Lagrangian formulation, respectively, are verified to be identical. In the second frame element, the deformed curved shape is regarded as the polygon and current flexural deformations in iteration process are neglected in evaluating tangent stiffness matrices and total member forces. Two numerical examples are given to demonstrate the accuracy and the good performance of the first frame element compared with the second element. Furthermore it is shown that the first frame element can be used in tracing nonlinear behaviors of cable members.

Bending and shear stiffness optimization for rigid and braced multi-story steel frames

  • Gantes, C.J.;Vayas, I.;Spiliopoulos, A.;Pouangare, C.C.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.377-392
    • /
    • 2001
  • The response of multi-story building structures to lateral loads, mainly due to earthquake and wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consisting of rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bending and shear stiffness distribution on the deformations of such structures is made. This is achieved by modeling the structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiffness distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. This is particularly the case for slender structural systems with prevailing bending deformations, such as flexible braced frames. This suggests that a new approach to the design of such frames may be appropriate when serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

Analysis on Bracket Attachement Stiffness in Bogie Frame (철도차량 대차프레임 취부 브라켓 강성증대를 위한 연구)

  • Han, Sung-Wook;Cho, Woo-Kang;Kim, Sung-Sub;Park, Sang-Koo;Song, Si-Yeop;Park, Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.843-851
    • /
    • 2007
  • It is known that bogie frame must have sufficient stiffness for car body and passenger weight and transfer traction and braking force, and as of today most studies and verifications are restricted to static and fatigue analysis for force acted on bogie frame. Bogie frame is mounted with equipments to control the signal, traction and so on, this equipment's behavior is subjected to vibration mode occurs on running condition. If the resonance occurs on this equipment, the possibility of crack occurrence on bracket connected with equipment and bogie frame will be increased. In this paper, the method of vibration strength verification for bracket attached on bogie frame will be introduced by using frequency response method.

  • PDF

Experimental study on identification of stiffness change in a concrete frame experiencing damage and retrofit

  • Zhou, X.T.;Ko, J.M.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.39-52
    • /
    • 2007
  • This paper describes an experimental study on structural health monitoring of a 1:3-scaled one-story concrete frame subjected to seismic damage and retrofit. The structure is tested on a shaking table by exerting successively enhanced earthquake excitations until severe damage, and then retrofitted using fiber-reinforced polymers (FRP). The modal properties of the tested structure at trifling, moderate, severe damage and strengthening stages are measured by subjecting it to a small-amplitude white-noise excitation after each earthquake attack. Making use of the measured global modal frequencies and a validated finite element model of the tested structure, a neural network method is developed to quantitatively identify the stiffness reduction due to damage and the stiffness enhancement due to strengthening. The identification results are compared with 'true' damage severities that are defined and determined based on visual inspection and local impact testing. It is shown that by the use of FRP retrofit, the stiffness of the severely damaged structure can be recovered to the level as in the trifling damage stage.

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining (다종소재 접합을 위한 SPR(Self-Piercing Riveting)용 C-프레임 강성 최적설계)

  • Shin, Chang-Yeul;Lee, Jae-Jin;Mun, Ji-Hun;Kwon, Soon-Deok;Yang, Min-Seok;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.76-84
    • /
    • 2021
  • In this study, an optimal stiffness model of the C-frame, which was supporting the mold and tool load, was proposed to obtain quality self-piercing riveting (SPR) joining. First, the load path acting on the C-frame structure was identified using topology optimization. Then, a final suggested model was proposed based on the load path results. Stiffness and strength analyses were performed for a rivet pressing force of 7.3 [t] to compare the design performance of the final proposed model with that of the initial model. Moreover, to examine the reliability of continuous and repeated processes, vibration analysis was performed and the dynamic stiffness of the final proposed model was reviewed. Additionally, fatigue analysis was performed to ascertain the fatigue characteristics due to simple repetitive loading. Finally, stiffness test was performed for the final proposed model to verify the analysis results. The obtained results differed from the analysis result by 2.9%. Consequently, the performance of the final proposed model was superior to that of the initial model with respect to not only the SPR fastening quality but also the reliability of continuous and repetitive processes.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Development of Racing Track Cycle for Elite Players Considered Stiffness and Aerodynamic Effects (공기저항 및 강성을 고려한 선수용 자전거 프레임 설계)

  • Kim, Taekyun;Lim, Woochul;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1077-1082
    • /
    • 2013
  • To improve cycling performance, the power output of the rider and the sources of resistance (e.g., air resistance, frame stiffness, and cycle mass) must be considered. From a mechanical viewpoint, we consider how the bike frame performance can be increased while decreasing the resistance. First, to improve the competitive ability of a racing track cycle, we should consider the stiffness of the bike frame including the pedal loading and aerodynamic effects when riding. Therefore, we obtained the cross-sectional area of each part of the bike frame and then aimed to minimize the drag force through an aerodynamic parametric study. In addition, the frame should remain safe under the loading applied by the rider. Under the guidelines of the UCI (union Cycliste Internationale) regulations, the bike frame has been evaluated under the proposed loading condition, and we developed a racing track cycle for elite cyclists.

Collapse Behavior of Vehicle Structures (처체구조물의 붕괴거동)

  • 김천욱;한병기;원종진;이종선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.54-62
    • /
    • 1998
  • In this study, collapse behavior of frame composed of thin-walled rectangular tube is investigated. Considering the collapse of frame, the bending and compression members undergo large deformation. The stiffness of the compound element is obtained from analytical moment-rotation relationship and approximated load-deflection relationsh- ip of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state of each element for bending and compression.

  • PDF