• Title/Summary/Keyword: Stiffness matrix

Search Result 929, Processing Time 0.021 seconds

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation (강성 저하된 적층복합판의 비선형 해석)

  • Han, Sung-Cheon;Park, Weon-Tae;Lee, Won-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2661-2669
    • /
    • 2010
  • In this study, a finite element formulation based first-order shear deformation theory is developed for non-linear behaviors of laminated composite plates containing matrix cracking. The multi-directional stiffness degradation is developed for adopting the stiffness variation induced from matrix cracking, which is proposed by Duan and Yao. The matrix cracking can be expressed in terms of the variation of material properties, such as Young's modulus, shear modulus and Possion ratio of plates, and sequently it is possible to predict the variation of the local stiffness. Using the assumed natural strain method, the present shell element generates neither membrane nor shear locking behavior. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear or geometrical nonlinear analysis of laminated composite plates. The results of laminated composite plates with matrix cracking may be the benchmark test for the non-linear analysis of damaged laminated composite plates.

The Durability of Elastin-Incorporated Collagen Matrix for Dermal Substitute in Vitro Condition (In vitro 환경에서 엘라스틴을 혼합한 콜라겐 진피 지지체의 내구성)

  • Lew, Dae Hyun;Hong, Jong Won;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: Since the report of artificial dermis manufacturing method using collagen by Yannas in 1980, collagen has been effectively used as dermal substitute with its merits such as, lower antigeneicity, controllable biodegradation rate, and minimal inflammatory cytotoxic properties in the dermal tissue engineering field. However, weak mechanical durability was the main drawback of collagen dermal substitute. To improve its stability, mechanical or chemical cross-linking was used. Despite of such process, its clinical use was restricted due to weak durability. To improve the durability of collagen matrix, we designed elastin-incorporated collagen matrix and compared its durability with conventional collagen matrix. Methods: 15mm diameter with 4mm thick collagen dermal matrix was made according to Yannas protocol by mixing 0.5% bovine collagen and chondroitin-6-sulfate followed by degassing, freeze drying, dehydrodermal cross-linking and chemical cross-linking procedure. In elastin incorporated collagen matrix, same procedure was performed by mixing elastin to previous collagen matrix in 4:1 ratio(collagen 80% elastin 20%). In comparison of the two dermal matrix in vitro tests, matrix contracture rate, strain, tensile strength, was measured and stiffness was calculated from comparative analysis. Results: In terms of matrix contracture, the elastin-incorperated added collagen dermis matrix showed 1.2 times more contraction compared to conventional collagen matrix. However, tensile strength showed 1.6 times and stiffness showed 1.6 times increase in elastin-incorporated matrix. Conclusion: Elastin incorperated collagen matrix manufactured by our team showed increased durability due to improvement in tensile strength and stiffness compared to previous collagen matrix($Integra^{(R)}$).

Dynamic analysis of trusses including the effect of local modes

  • Levy, Eldad;Eisenberger, Moshe
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.81-94
    • /
    • 1999
  • The dynamic analysis of trusses using the finite element method tends to overlook the effect of local member dynamic behavior on the overall response of the complete structure. This is due to the fact that the lateral inertias of the members are omitted from the global inertia terms in the structure mass matrix. In this paper a condensed dynamic stiffness matrix is formulated and used to calculate the exact dynamic properties of trusses without the need to increase the model size. In the examples the limitations of current solutions are presented together with the exact results obtained from the proposed method.

Vector algorithm for reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.125-139
    • /
    • 1994
  • A vector algorithm for calculating the stiffness matrices of reinforced concrete shell elements is presented. The algorithm is based on establishing vector lengths equal to the number of elements. The computational efficiency of the proposed algorithm is assessed on a Cray Y-MP supercomputer. It is shown that the vector algorithm achieves scalar-to-vector speedup of 1.7 to 7.6 on three moderate sized inelastic problems.

An Analysis Method of Large Structure Using Matrix Blocking (블록화기법을 이용한 대형구조물의 해석방법)

  • Jung, Sung-Jin;Lee, Min-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.30-37
    • /
    • 2014
  • In this study, we studied how to perform the structural analysis which need a large-capacity flash memory with the computer program when the flash memory storage of a personal computer has no enough room for the analysis of structure. As one of the solutions of this problem, the blocking method of stiffness matrix, which is a method that stiffness matrix is divided by a few blocks and each block is sequentially used for the calculation of matrix decomposition, is proposed and an algorithm available in computer program is derived on the method. Finally, A structural analysis program (sNs) based on this study is developed and the correctness and efficiency of the algorithm is founded through some examples which are fundamental in structural analysis.

Computational Modeling of Mount Joint Part of Machine Tools (공작기계 마운트 결합부의 전산 모델링)

  • Ha, Tae-Ho;Lee, Jae-Hak;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1056-1061
    • /
    • 2012
  • FEM analysis is essential to shorten the development time and reduce the cost for developing high-performance machine tools. Mount joint parts play important role to ensure static and dynamic stability of machine tools. This paper suggests a computational modeling of mount joint part of machine tools. MATRIX27 element of ANSYS is adopted to model mount joint parts. MATRIX27 allows the definition of stiffness and damping matrices in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node. Stiffness and damping values of commercial mount products are measured to build a database for FEM analysis. Jack mounts with rubber pad are exemplified in this paper. The database extracted from the experiments is also used to estimate of stiffness and damping of untested mounts. FEM analysis of machine tools system with the suggested mount computational model is performed. Static and dynamic results prove the feasibility of the suggested mount model.

A Study on the Coupled Torsional-Axial Vibration of Marine Propulsion Shafting System using the Energy Method

  • Jang, Min-Oh;Kim, Ue-Kan;Park, Yong-Nam;Lee, Young-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.482-492
    • /
    • 2004
  • Recently. the market trend for marine diesel engine has involved the lower running speeds. larger stroke/bore ratio and higher combustion pressure. Consequently, because of the flexible engine shafting system due to the larger mass. inertia and the more elasticity, the complicated coupled torsional-axial vibrations have occurred in the operating speed range. Also, the vibrations act as an excitation on the hull-structural vibration. To predict the vibration behavior with more accuracy and reliability. many studies have proposed the several kinds of method to calculate the stiffness matrix of crankshaft. However, most of these methods have a weak point to spend much time on three dimensional modeling and meshing work for crankshaft. Therefore. in this work. the stiffness matrix for the crankthrow is calculated using the energy method (Influence Coefficient Method, ICM) with the each mass having 6 degree of freedom. Its effectiveness is verified through the comparison with the stiffness matrix obtained by using the finite element method (FEM) and measured results for actual ships propulsion system.

Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix (유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정)

  • Na, Chae-Kuk;Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.