• 제목/요약/키워드: Stiffness coefficient

검색결과 574건 처리시간 0.026초

감도계수 반복법을 이용한 비비례감쇠계의 고유치 및 고유벡터 변화량 해석 (Analysis of Eigenderivative for the Non-Proportional Damped Structure Using the Iterative Method of the Sensitivity Coefficient)

  • 이정윤
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.750-756
    • /
    • 2006
  • This study predicts the modified eigenvectors and eigenvalues of the non-proportional damped structure due to the change in the mass, damping and stiffness of structure by iterative method of the sensitivity coefficient using the original dynamic characteristic. The method is applied to the non-proportional damped 3 degree of freedom system by modifying the mass, damping and stiffness. The predicted dynamic characteristics are showed a good agreement with these from the structural reanalysis using the modified mass, damping and stiffness.

전달강성계수법과 부분구조합성법을 이용한 구조물의 진동해석 (Vibration Analysis of Structures Using the Transfer Stiffness Coefficient Method and the Substructure Synthesis Method)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.24-30
    • /
    • 2001
  • The substructure synthesis method(SSM) is developed for overcoming disadvantages of the Finite Element Method(FEM). The concept of the SSM is as follows. After dividing a whole structure into several substructures, every substructures are analyzed by the FEM or experiment. The whole structure is analyzed by using connecting condition and the results of substructures. The concept of the transfer stiffness coefficient method(TSCM) is based on the transfer of the nodal stiffness coefficients which are related to force vectors and displacement vectors at each node of analytical mode1. The superiority of the TSCM to the FEM in the computation accuracy, cost and convenience was confirmed by the numerical computation results. In this paper, the author suggests an efficient vibration analysis method of structures by using the TSCM and the SSM. The trust and the validity of the present method is demonstrated through the numerical results for computation models.

  • PDF

전달강성계수법을 이용한 보강재를 갖는 사각평판의 진동해석 (Vibration Analysis of a Rectangular Plate with Stiffeners Using the Transfer Stiffness Coefficient Method)

  • 문덕홍
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.42-49
    • /
    • 2005
  • The vibration analysis of a rectangular plate with stiffeners is formulated by using the transfer stiffness coefficient method (TSCM). This method is based on the concept of the successive transmission of stiffness coefficients which are defined as the relationship between the force vector and the displacement vector at an arbitrary nodal line. In order to confirm the validity of the present method, bending vibration analysis for a rectangular plate with stiffener is carried out on a personal computer by using the present method and the finite element method (FEM). Through comparing computational results of the TSCM and the FEM, the effectivness of the TSCM from the viewpoint of computational cost, that is, computational time and storage is demonstrated.

  • PDF

전달강성계수법에 의한 보형구조물의 종.굽힘진동해석 (Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;김용복
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

걸윙도어 쇽업쇼버의 최적설계 (Optimum Design for Shock Absorber of Gullwing Door)

  • 장영진;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.188-191
    • /
    • 2005
  • In this paper, a design optimization technique is presented for determining the stiffness and the damping coefficient of the shock absorber that is used in the Gullwing door system of passenger car. The contact force between the shock absorber and stopper link, when the door is opened, is set up as objective function, and the stiffness and the damping coefficient are set up as design variables. ADAMS optimization module (SQP method) is applied in the design optimization process. This study shows that the stiffness and the damping coefficient of the shock absorber can be effectively determined in initial design stage of the Gullwing door.

  • PDF

Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.681-697
    • /
    • 2019
  • This paper numerically assesses the initial stiffness and moment capacity of stainless steel composite bolted joints with concrete-filled circular tubular (CFCT) columns. By comparing with existing design codes including EN 1993-1-8 and AS/NZS 2327, a modified component method was proposed to better predict the flexural performance of joints involving circular columns and curved endplates. The modification was verified with independent experimental results. A wide range of finite element models were then developed to investigate the elastic deformations of column face in bending which contribute to the corresponding stiffness coefficient. A new design formula defining the stiffness coefficient of circular column face in bending was proposed through regression analysis. Results suggest that a factor for the stiffness coefficient of endplate in bending should be reduced to 0.68, and more contribution of prying forces needs to be considered. The modified component method and proposed formula are able to estimate the structural behaviour with reasonable accuracy. They are expected to be incorporated into the current design provisions as supplementary for beam-to-CFCT column joints.

틸팅 패드 추력베어링의 동특성 해석 (An Analysis of Dynamic Characteristics of Tilling Pad Thrust Bearings)

  • 김종수
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.33-41
    • /
    • 1997
  • In this paper the linearized stiffness and damping coefficients of tilting pad thrust bearing are calculated by the perturbation method. The coefficients are obtained for a wide range of pivot positions. The effects of exciting frequency and pad mass on stiffness and damping coefficients are investigated. Critical frequencies due to the tilting motions of the pad are presented and are shown to be strongly influenced by the pivot position and the pad mass.

유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석 (Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;변정환;여동준
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.

고속철도 궤도패드의 최소 수직 스프링계수 결정에 관한 연구 (A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads in Korea High Speed Railway.)

  • 김정일;양신추;김연태;서사범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2005
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

  • PDF

강성계수의 전달을 이용한 횡방향 하중을 받는 축대칭 원판의 정적해석 (Static Analysis of Axisymmetric Circular Plates under Lateral Loading Using Transfer of Stiffness Coefficient)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.64-69
    • /
    • 2014
  • A circular plate is one of the important structures in many industrial fields. In static analysis of a circular plate, we may obtain an exact solution by analytical method, but it is limited to a simple circular plate. Thus, many researchers and designers have used numerical methods such as the finite element method. The authors of this paper developed the finite element-transfer stiffness coefficient method (FE-TSCM) for static and dynamic analyses of various structures. FE-TSCM is the combination of the modeling technique of the finite element method (FEM) and the transfer technique of the transfer stiffness coefficient method (TSCM). FE-TSCM has the advantages of both FEM and FE-TSCM. In this paper, the authors formulate the computational algorithm for the static analysis of axisymmetric circular plates under lateral loading using FE-TSCM. The computational results for three computational models obtained by FE-TSCM are compared with those obtained by FEM in order to confirm the accuracy of FE-TSCM.