• 제목/요약/키워드: Stiffness characteristics

검색결과 2,228건 처리시간 0.033초

패드 그루브의 치수가 CMP 연마특성에 미치는 영향 (The Effects of Groove Dimensions of Pad on CMP Characteristics)

  • 박기현;김형재;최재영;서헌덕;정해도
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.432-438
    • /
    • 2005
  • CMP characteristics such as material removal rate and edge effect were measured and investigated in accordance with pad grooving effect, groove width, depth and pitch. GSQ (Groove Stiffness Quotient) and GFQ (Groove Flow Quotient) were proposed to estimate pad grooving characteristics. GSQ is defined as groove depth(D) divided by pad thickness(T) and GFQ is defined as groove width(W) divided by groove pitch(P). As GFQ value increased, material removal rate increased some point but gradually saturated. It seems that material removal rate is not affected by each parameter respectively but by interaction of these parameters such as groove dimensions. In addition, an increase in GFQ and GSQ causes edge effect to be improved. Because, pad stiffness decreases as GSQ and GFQ increase. In conclusion, groove influences relative pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. The change of groove dimensions has influence on pad stiffness and slurry flow, so that polishing results such as removal rate and edge effect become changed.

초고속 구동축의 지지 조건에 따른 안정성 분석 (Stability Analysis of High-speed Driveshafts under the Variation of the Support Conditions)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.40-46
    • /
    • 2011
  • This paper is to investigate the effects of the asymmetrical support stiffness on the stability of a supercritical driveshaft with asymmetrical shaft stiffness and anisotropic bearings. The equations of motion is derived for a system including a rigid disk, a massless flexible asymmetric shaft, anisotropic bearings and a support beam. The Floquet theory is applied to perform the stability analysis with the variation of the support stiffness, the shaft asymmetry, the shaft damping and the shaft speed. The results show that the asymmetric support stiffness is closely related to the stability caused by primary resonance as well as the supercritical operation. First, the stiffness variation can stabilize the system around primary resonance by weakening the parametric resonance from the shaft asymmetry. Second, it also improve the stability characteristics at a supercritical operation when the support stiffness is not so high relative to the shaft stiffness.

Stiffness modeling of RC columns reinforced with plain rebars

  • Ozcan, Okan
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.163-180
    • /
    • 2014
  • Inaccurate predictions of effective stiffness for reinforced concrete (RC) columns having plain (undeformed) longitudinal rebars may lead to unsafe performance assessment and strengthening of existing deficient frames. Currently utilized effective stiffness models cover RC columns reinforced with deformed longitudinal rebars. A database of 47 RC columns (33 columns had continuous rebars and the remaining had spliced reinforcement) that were longitudinally reinforced with plain rebars was compiled from literature. The existing effective stiffness equations were found to overestimate the effective stiffness of columns with plain rebars for all levels of axial loads. A new approach that considers the contributions of flexure, shear and bond slip to column deflections prior to yielding was proposed. The new effective stiffness formulations were simplified without loss of generality for columns with and without lap-spliced plain rebars. In addition, the existing stiffness models for the columns with deformed rebars were improved while taking poor bond characteristics of plain rebars into account.

성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석 (Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment)

  • 배우석;김종우;권영철
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

탄성 줄을 이용한 팔꿈치 관절 재활 분석 (Analysis on Rehabilitation of Elbow Joint Using Elastic String)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제26권3호
    • /
    • pp.196-201
    • /
    • 2016
  • 본 논문에서는 인간의 팔꿈치 관절의 기능을 활성화하기 위한 강성 기반 재활 메커니즘의 특성을 분석하 고자 한다.여기서,팔굼치 관절의 재활을 위한 도구는 탄성 줄을 사용하고, 사용된 줄은 선형 스프링으로 모델링하여 강성값으로 나타낸다. 이러한 메커니즘을 이용한 팔꿈치 관절 재활 훈련을 효과적으로 하기 위해서는 줄의 강성값에 따라 팔꿈치 관절에 가용할 수 있는 토오크 특성을 분석할 필요가 있다. 이러한 관점에서 다양한 시뮬레이션을 통하여 탄성 줄의 강성값 설정에 따른 팔꿈치 관절의 토오크 패턴 및 범위를 사전에 정의된 팔꿈치 관절의 운동 경로에 대하여 확인한다. 결과적으로, 이러한 강성 기반 재활 메커니즘이 팔꿈치 관절의 효과적인 재활을 수행하는데 유용하게 활용될 수 있음을 보인다.

볼 베어링의 강성과 스퍼기어 계의 모드 특성 (Mode Characteristics of Spur Gears and Ball-Bearing Stiffness)

  • 박찬일
    • 대한기계학회논문집A
    • /
    • 제40권5호
    • /
    • pp.489-495
    • /
    • 2016
  • 기어 맞물림 동적 힘은 축과 베어링을 통해 하우징에 전달되어 소음으로 발생하므로, 베어링 강성은 하우징의 최종 전달자로서 기어 소음을 제어하는데 중요한 역할을 한다. 이 논문은 스퍼기어를 위한 볼 베어링의 강성을 유도하고, 베어링 하중과 반경 방향 틈새를 고려하여 강성을 계산하였다. 그 강성을 이용하여 3 자유도 모델의 스퍼기어계의 운동방정식에 적용하여 모드 특성을 해석하였고, 유한요소법으로 검증하였다. 그 결과 베어링 하중이 클 때보다 작을 때는 틈새에 따라 베어링 강성의 변화가 많았다. 베어링 강성은 저주파 고유 진동수에 영향을 주었고 기어 맞물림 주파수는 고주파 고유진동수에 영향을 주었다.

조도효과를 고려한 다공질 공기베어링의 강성 특성에 관한 수치 해석 연구 (Numerical Investigation on Static and Dynamic Stiffness Characteristics of Porous Air Bearing Considering Roughness Effects)

  • 권혁록;노경철;정순철;심형섭;홍사훈;이성혁;이재응;지홍규;이동진;류제형;최형길;김혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1170-1176
    • /
    • 2006
  • This study aims to investigate numerically the static and dynamic stiffness characteristics of porous air bearing and to estimate appropriate permeability values of porous medium. In particular, a new roughness model is proposed and implemented into the commercial CFD code (FLUENT Ver.6.2). The predicted results are extensively compared with experimental data for static cases. The roughness model is also validated through comparison with the results from open literature. For the dynamic cases, the deforming and re-meshing technique is used for describing fluid-solid interactions. It is found that the predictions for static stiffness are in good agreement with experimental data and the dynamic stiffness appears to be relatively smaller than the static stiffness. In addition, moving and dynamic analysis of air bearing seems to be possible to provide qualitative predictions even if there are somewhat discrepancies quantitatively, compared to experimental data.

  • PDF

로터 블레이드와 전방와류의 상호작용에 의한 진동특성 측정에 관한 연구 (A Study on The Measurement of Vibration Characteristics by Iteration of The Rotor Blade and The Front Vortex)

  • 이명옥;최종수;이욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.170-175
    • /
    • 2005
  • The focus of this paper is to observe the aerodynamic and vibration characteristics of the NACA0012 blade(AR=16.6) fixed on the lower surface of the wind tunnel, by changing air speed and the blade's angle of attack. After fixing a slit-typed vortex generator on the front of the blade, it could be observed that the vibrational characteristics caused by interactions between vortex and blade through the 5-hole pilot tubes. And, also, two different blades in stiffness had been prepared for observing those characteristics above in this experiment. The results were compared with the given stiffness of blade, as well. According to the results, it is clear to recognize that the vibration spectrum increases while air speed and angle of attack increase, and, also, less stiffness means bigger vibration spectrum.

  • PDF

케이블 장력 및 피뢰기의 강성 변화를 고려한 애자형 피뢰기의 동특성 시험 연구 (Experimental Study on the Dynamic Characteristics of Porcelain Surge Arrestor Considering the Variation of Cable's Tension and Arrestor's Stiffness)

  • 장정범;황경민;연관희
    • 한국지진공학회논문집
    • /
    • 제18권5호
    • /
    • pp.253-259
    • /
    • 2014
  • Porcelain surge arrestor is very vulnerable to earthquake but there is very few information on its dynamic characteristics which are necessary to the seismic design. Therefore, the dynamic characteristics of the porcelain surge arrestor are evaluated considering the variation of its cable tension and stiffness by shaking table test. The test results show that the first natural frequencies are 5.3 Hz and 5.2 Hz in the horizontal x- and y-axis directions, respectively, and higher than 30 Hz in the vertical z-axis direction, respectively. The installation of cable on the surge arrestor reduces the horizontal natural frequencies due to the constraint effect of the cable but cable tension has no effect on the natural frequency. Also, the natural frequency is proportional to the stiffness of the surge arrestor. This test result will be used for the seismic design and seismic capacity assessment of domestic substations and contribute to the stability of the electric power supply under earthquake event.