• Title/Summary/Keyword: Stiffness Matrix Formulation

Search Result 141, Processing Time 0.027 seconds

Dynamic stiffness analysis of steel-concrete composite beams

  • Li, Jun;Huo, Qiji;Li, Xiaobin;Kong, Xiangshao;Wu, Weiguo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.577-593
    • /
    • 2014
  • An exact dynamic stiffness method is introduced for investigating the free vibration characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel beam which are connected by using the stud connectors. The elementary beam theory is used to define the dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the governing differential equations of the composite beams in undamped free vibration. The application of the derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the steel-concrete composite beams with seven boundary conditions. The present results are compared to the available solutions in the literature whenever possible.

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

Geomatrically Non-linear Analysis Method by Curvature Based Flexibility Matrix (유연도 매트릭스를 사용한 기하학적 비선형 해석방법)

  • Kim, Jin Sup;Kwon, Min Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 2011
  • The latest study for formulation of finite element method and computation techniques has progressed widely. The classical method in the formulation of frame elements for geometrically nonlinear analysis derives the geometric stiffness directly from the governing differential equation for bending with axial force. From the computational viewpoint of this paper, the most common approach is the finite element method. Commonly, the formulation of frame elements for geometrically nonlinear structures is based on appropriate interpolation functions for the transverse and axial displacements of the member. The formulation of flexibility-based elements, on the other hand, is based on interpolation functions for the internal forces. In this paper, a new method is used to suppose that interpolation functions for the displacements from the curvatures is Lagrangian interpolation. This paper derives flexibility matrix from that displacement functions and is considered the application of it. Using the flexibility matrix, this paper apply the program considered geometrically nonlinear analysis to common problems.

Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.77-91
    • /
    • 2013
  • The paper presents the formulation of 3-nodal line semi-analytical Mindlin-Reissner finite strip in the buckling analysis of thin-walled members, which are subjected to arbitrary loads. The finite strip is simply supported in two opposite edges. The general loading and in-plane rotation techniques are used to develop this finite strip. The linear stiffness matrix and the geometric stiffness matrix of the finite strip are given in explicit forms. To validate the proposed model and study its performance, numerical examples of some thin-walled sections have been performed and the results obtained have been compared with finite element models and the published ones.

A Study on the Post-Buckling Analysis of Spatial Structures by using Dynamic Relaxation Method (동적이완법을 이용한 공간구조의 후좌굴 해석에 관한 연구)

  • Lee Kyong-Soo;Lee Sang-Ju;Lee Hyong-Hoon;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.175-182
    • /
    • 2005
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. This numerical algorithm do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

A Study on the Post-Buckling analysis of spatial structures by using dynamic relaxation method (동적이완법을 이용한 공간구조의 후좌굴 해석에 관한 연구)

  • Lee, Kyong-Soo;Lee, Sang-Ju;Lee, Hyong-Hoon;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.154-160
    • /
    • 2005
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. The dynamic relaxation do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Non-Dimensional Analysis of a Two-Dimensional Beam Using Linear Stiffness Matrix in Absolute Nodal Coordinate Formulation (절대절점좌표계에서 선형 강성행렬을 활용한 2차원 보의 무차원 해석)

  • Kim, Kun Woo;Lee, Jae Wook;Jang, Jin Seok;Oh, Joo Young;Kang, Ji Heon;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • Absolute nodal coordinate formulation was developed in the mid-1990s, and is used in the flexible dynamic analysis. In the process of deriving the equation of motion, if the order of polynomial referring to the displacement field increases, then the degrees of freedom increase, as well as the analysis time increases. Therefore, in this study, the primary objective was to reduce the analysis time by transforming the dimensional equation of motion to a non-dimensional equation of motion. After the shape function was rearranged to be non-dimensional and the nodal coordinate was rearranged to be in length dimension, the non-dimensional mass matrix, stiffness matrix, and conservative force was derived from the non-dimensional variables. The verification and efficiency of this non-dimensional equation of motion was performed using two examples; cantilever beam which has the exact solution about static deflection and flexible pendulum.