• Title/Summary/Keyword: Stiffness Matrix Condensation

Search Result 29, Processing Time 0.022 seconds

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Application of Condensed Joint Matrix Method to the Joint Structure of Vehicle Body (축약 행렬법을 적용한 차체 결합부 해석)

  • 서종환;서명원;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.9-16
    • /
    • 1998
  • The joint characteristics are necessary to be determined in the early stage of the vehicle body design. Researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle struct- ure were expressed as condensed forms from the full joint stiffness and mass matrix. The condensed joint stiffness and mass matrix were applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, those were applied to center pillar and full vehicle body to validate the practical application.

  • PDF

An efficient method for computation of receptances of structural systems with sparse, non-proportional damping matrix (성긴 일반 감쇠행렬을 포함하는 구조물에 대한 효율적인 주파수 응답 계산 방법)

  • Park, Jong-Heuck;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.99-106
    • /
    • 1995
  • Frequency response functions are of great use in dynamic analysis of structural systems. The present paper proposes an efficient method for computation of the frequency rewponse functions of linear structural dynamic models with a sparse, non-proportional damping matrix. An exact condensation procedure is proposed which enables the present method to condense the matrices without resulting in any errors. Also, an iterative scheme is proposed to be able to avoid matrix inversion in computing frequency response matrix. The proposed method is illustrated through a numerical example.

  • PDF

Local Nonlinear Static Analysis via Static Condensation (강성응축기법을 이용한 국부 비선형 정적 해석)

  • Shin, Han-Seop;Oh, Min-Han;Boo, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In this study, an analysis technique using static condensation is proposed for an efficient local nonlinear static analysis. The static condensation method is a model reduction method based on the degrees of freedom, and the analysis model is divided into a target part and a condensed part to be omitted. In this study, the nonlinear and linear parts were designated to the target and the omitted parts, respectively, and both the stiffness matrix and load vector corresponding to the linear part were condensed into the nonlinear part. After model condensation, the reduced model comprising the stiffness matrix and the load vector for the nonlinear part is constructed, and only this reduced model was updated through the Newton-Raphson iteration for an efficient nonlinear analysis. Finally, the efficiency and reliability of the proposed analysis technique were presented by applying it to various numerical examples.

Partial Reanalysis Algorithm with Static Condensation (정적응축기법을 이용한 부분재해석 알고리즘)

  • Kim, Chee-Kyeong;Choi, Dong-In
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.175-181
    • /
    • 2006
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity. The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

  • PDF

An Efficient Structural Analysis of Multistory Buildings (고층건물의 효율적인 구조해석)

  • Kim, Kyeong Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.141-153
    • /
    • 1987
  • The prediction of the exact behavior of multistory building is one of the most complicated problem encountered in structural engineering practice. An efficient computer method for the three dimensional analysis of building structures is presented in this paper. A multistory building is idealized as an assemblage of a series of rectangular plane frames interconnected by rigid floor diaphragms. The matrix condensation technique is employed for the reduction of degrees of freedom, which results in a significant saving in computational efforts and the required memory size. Kinematical approach was used to assemble condensed stiffness matrices of plane frames into a three dimensional stick model stiffness matrix. The static analysis follows the modified tridiagonal approach. Since this procedure utilizes the condensed stiffness matrix of the structure, the dynamic equations of motion for the story displacement are developed by assigning proper mass for each story. Analysis results of several example structures are compared to those obtained by using the well-known SAP IV for verification of the accuracy and efficiency of the computer program PFS which was developed utilizing the method proposed in this study. The analysis method proposed in this study can be used as an efficient and economical means for the analysis of multistory buildings.

  • PDF

An efficient method for computation of unbalance responses of rotor-bearing systems (회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법)

  • Hong, Seong-Wook;Park, Jong-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

Coupled Axial and Torsional Vibration Analysis in Large Diesel Engines and Generators for Stationary Power Plants (내연 발전용 대형 디젤 엔진-발전기 축계의 종-비틈 연성진동 해석)

  • Park, Heui-Joo;Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1040-1045
    • /
    • 2000
  • This paper presents results of coupled axial and torsional vibration analysis of shafting system in large diesel engines and generators for stationary power plants. Axial vibration of the shafting system takes place due to mainly torsional deformation or vibration and breathing effect of crank throws, caused by cylinder gas forces and reciprocating inertia of the engine. Cross-coupled stiffness matrix of the crank throws is calculated employing a finite element model of the crank throw and a static condensation method. Forced response analysis of the shafting system is performed using the calculated stiffness matrix and derived governing equations.

  • PDF

Definition and Application of Equivalent Load for Stiffness (강성등가하중의 정의와 응용)

  • Kim Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.303-312
    • /
    • 2006
  • This paper presents the equivalent nodal load for the element stiffness which represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The reanalysis of structure using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in the reanalysis. In this paper, the concept of the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.