• 제목/요약/키워드: Stiffness Matrix

검색결과 918건 처리시간 0.037초

동특성 변화를 이용한 구조물의 손상 탐지 해석 (Analysis of a Structural Damage Detection using the Change of Dynamic Characteristics)

  • 이정윤;이정우;이준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.760-763
    • /
    • 2003
  • This study proposed the analysis of damage defection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

  • PDF

전단빌딩의 강성행렬 및 부재의 강성추정을 위한 부분공간 시스템 확인기법에서의 행켈행렬의 크기 결정 (Determining the Size of a Hankel Matrix in Subspace System Identification for Estimating the Stiffness Matrix and Flexural Rigidities of a Shear Building)

  • 박승근;박현우
    • 한국전산구조공학회논문집
    • /
    • 제26권2호
    • /
    • pp.99-112
    • /
    • 2013
  • 이 논문은 부분공간 시스템 확인기법을 이용하여 전단빌딩의 강성행렬과 부재의 강성을 추정하는 기법을 소개한다. 시스템 행렬은 입력-출력 데이터로 구성된 행켈행렬을 LQ 분해와 특이치 분해를 통해 추정한다. 추정된 시스템 행렬은 닮음 변환을 통해 실제 좌표축으로 변환하고, 변환된 시스템 행렬로부터 강성행렬을 계산한다. 추정된 강성행렬의 정확성과 안정성은 행켈행렬의 크기에 따라 변한다. 전단빌딩의 기저 유한요소 모델을 이용하여 행켈행렬의 크기에 따른 강성행렬의 추정 오차 곡선을 구한다. 오차 곡선을 이용하여 목표 정확도 수준에 부합하는 행켈행렬의 크기들을 결정한다. 이렇게 선택된 행렬의 크기들 중에서 부분공간 시스템 확인의 계산비용을 고려하여 보다 적절한 행렬의 크기를 결정할 수 있다. 결정된 크기의 행켈행렬을 이용하여 강성행렬을 추정하고 추정된 강성행렬로부터 부재의 강성을 추정한다. 제안된 방법을 손상 전후의 5층 전단빌딩 수치 예제에 적용하여 타당성을 검증한다.

탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법 (Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations)

  • 김남일;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

Vector algorithm for layered reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.173-183
    • /
    • 1995
  • A new vector algorithm is presented for computing the stiffness matrices of layered reinforced concrete shell elements. Each element stiffness matrix is represented in terms of three vector arrays of lengths 78, 96 and 36, respectively. One element stiffness matrix is calculated at a time without interruption in the vector calculations for the uncracked or cracked elements. It is shown that the present algorithm is 1.1 to 7.3 times more efficient then a previous algorithm developed by us on a Cray Y-MP supercomputer.

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

저자유도 병렬형 로봇의 강성 모델링 (Stiffness Modeling of a Low-DOF Parallel Robot)

  • 김한성
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.320-328
    • /
    • 2007
  • This paper presents a stiffness modeling of a low-DOF parallel robot, which takes into account of elastic deformations of joints and links, A low-DOF parallel robot is defined as a spatial parallel robot which has less than six degrees of freedom. Differently from serial chains in a full 6-DOF parallel robot, some of those in a low-DOF parallel robot may be subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each serial chain can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness of an F-DOF parallel robot can be modeled such that the moving platform is supported by 6 springs related to the reciprocal screws of actuations (F) and constraints (6-F). A general $6{\times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints, The compliance of each spring can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; a link is modeled as an Euler beam and the compliance matrix of rotational or prismatic joint is modeled as a $6{\times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is infinite. By summing joint and link compliance matrices with respect to a reference frame and applying unit reciprocal screw to the resulting compliance matrix of a serial chain, the compliance of a spring is determined by the resulting infinitesimal displacement. In order to illustrate this methodology, the stiffness of a Tricept parallel robot has been analyzed. Finally, a numerical example of the optimal design to maximize stiffness in a specified box-shape workspace is presented.

Buckling of thick deep laminated composite shell of revolution under follower forces

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour;Hemmati, Mona
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.59-91
    • /
    • 2016
  • Laminated composite shells are commonly used in various engineering applications including aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling behavior of laminated composite deep as well as thick shells of revolution under follower forces which remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower forces subjected to external fibers in thick shells. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements and rotations in the middle surface of shell are approximated by combining polynomial functions in the meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which is an eigenvalue problem are provided. In this study, different parameter effects are investigated including shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are compared with other researches. By considering the results of this article, it can be concluded that the deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. This characteristic is studied for different examples.

균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도 (Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation)

  • 김문영;윤희택;곽태영
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.463-469
    • /
    • 2002
  • 탄성지반 위에 놓인 보-기둥 요소의 총포텐셜 에너지로부터 변분원리를 적용하여 지배방정식과 힘-변위 관계식을 유도하였다. 4계 상미분방정식 형태의 지배방정식을 4개의 변위 파라메타를 도입하여 1계 연립미분방정식 형태의 선형 고유치 문제로 전환하고, 힘-변위 관계식을 적용하여 엄밀한 정적, 동적 요소강성행렬을 유도하였다. 직접강성법을 이용하여 구조물 강성행렬을 구하고, 2차원 보-기둥구조의 엄밀한 좌굴하중과 고유진동수를 구하고, 결과를 유한요소해와 비교함으로써 본 연구의 타당성을 검증하였다. 이러한 엄밀한 해석방법은 Hermitian 다항식을 형상함수로 도입하여 요소의 강성행렬을 산정하는 유한요소법과 비교할 때, 요소의 수를 대폭 줄일 수 있는 장점이 있다.

Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구 (Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate)

  • 김용우;박춘수;민옥기
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

고유치를 이용한 병렬형 기구의 강성범위 해석 (Analysis of Stiffness Bounds for Parallel Devices Using Eigenvalues)

  • 김택수;김현;홍대희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.699-702
    • /
    • 2000
  • In order to use a parallel device fur machine tool feed mechanism, it is very important to analyze its stiffness over the workspace. Generally, the stiffness of a rod varies with its length. In this paper, the stiffness of the leg is modeled as a linear function. With the linear stiffness model, the methods that can determine stiffness bounds and max/min stiffness directions are presented utilizing eigenvalues and eigenvectors of the stiffness matrix. The stiffness variation along a tool-path and stiffness mapping over a workspace are presented with cubic-shaped parallel device which is originally designed for machine tool feed mechanism.

  • PDF