• 제목/요약/키워드: Stiffness Matrix

검색결과 918건 처리시간 0.026초

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석 (An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix)

  • 남문희;하대환;이관희;장홍득
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.193-200
    • /
    • 1997
  • 탄성지반상의 원형탱크해석에는 여러방법이 있지만 최근에 널리 사용되는 방법은 유한요소법이다. 그러나 이 방법은 탄성지반상의 탱크해석시 많은 절점수가 필요하게 된다. 이것은 곧 많은 계산기 기억용량 및 계산시간 뿐만 아니라 노력이 필요하게 된다. 본 연구에서는 유사탄성지반보(Analogy of Beam on Elastic Foundation) 및 지반강성행렬(Foundation Stiffness Matrix)을 이용하여 축대칭하중을 받는 축대칭탱크를 뼈대 구조화 할 수 있었다. 또한 이 뼈대 구조를 유한요소로 분할하고, 각 요소 강성행렬(Stiffness Matrix)을 전달행렬(Transfer Matrix)로 전환하여 전달행렬법으로 원형탱크를 해석 할 수 있었다. 유한요소법과 전달행렬법을 탄성지반상의 원형탱크 해석에 적용한 결과 두 해석결과의 차이는 없고, 전달행렬법을 적용한 경우 최종 연립방정식수가 4개로 간략화 되었다.

  • PDF

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석 (Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method)

  • 조재혁;김현욱;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

동적 시스템의 감쇠행렬 추정 (Estimation of Damping Matrices for Dynamic Systems)

  • 이건명;김경주;주영호
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1021-1027
    • /
    • 2009
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping. In the second stage, a damping matrix is estimated with the mass and stiffness matrices fixed. Methods to estimate a damping matrix for this purpose are proposed in this paper. For a system with proportional damping, a damping matrix is estimated using the modal parameters extracted from the measured responses and the modal matrix calculated from the mass and stiffness matrices from the first stage. For a system with non-proportional damping, a damping matrix is estimated from the impedance matrix which is the inverse of the FRF matrix. Only one low or one column of the FRF matrix is measured, and the remaining FRFs are synthesized to obtain a full FRF matrix. This procedure to obtain a full FRF matrix saves time and effort to measure FRFs.

공간적으로 보강된 복합재료의 강성예측 (Stiffness Prediction of Spatially Reinforced Composites)

  • 유재석;장영순;이상의;김천곤
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.25-38
    • /
    • 2004
  • 본 연구에서는 라드와 기지의 강성행렬의 중첩을 통해서 임의의 방향에서 공간적으로 보강된 복합재(SRC)의 강성을 예측하였다. 예측치를 실험과 비교하기 위하여 SRC의 물성치를 측정하였다. 라드방향에서는 강성행렬의 중첩을 통해서 예측된 물성치가 실험치와 일치하였고, 라드에서 벗어난 방향에서는 연성행렬의 중첩을 통해서 예측된 물성치가 실험치와 비교적 일치하였다. 이런 이유로 강성행렬과 연성행렬의 중첩을 공간적으로 조합한 물성치 조화함수를 이용하여, SRC의 모든 방향에서 물성치를 예측하였다. 이러한 물성치 조화함수를 이용한 결과, 예측치와 실험치가 라드방향과 라드에서 벗어난 방향 모두에서 일치하였다

감도해석을 이용한 구조물의 손상위치 및 크기해석 (Analysis of a Structural Damage Detection Using Sensitivity Analysis)

  • 이정윤
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.