• 제목/요약/키워드: Stiffness Influence Coefficients

검색결과 33건 처리시간 0.022초

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Research on the inlet preswirl effect of clearance flow in canned motor reactor coolant pump

  • Xu, Rui;Song, Yuchen;Gu, Xiyao;Lin, Bin;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2540-2549
    • /
    • 2022
  • For a pressurized water reactor power plant, the reactor coolant pump (RCP) is a kernel component. And for a canned motor RCP, the rotor system's properties determines its safety. The liquid coolant inside the canned motor RCP fills clearance between the metal shields of rotor and stator, forming a lengthy clearance flow. The influence of inlet preswirl on rotordynamic coefficients of clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally investigated in this work. A quasi-steady state computational fluid dynamics (CFD) method has been used to investigate the influence of inlet preswirl. A vertical experiment rig has also been established for this purpose. Rotordynamic coefficients on different inlet preswirl ratios (IR) are obtained through CFD and experiment. Results show that the cross-coupled stiffness of the clearance flow would change significantly with inlet preswirl, but other rotordynamic coefficients would not change significantly with inlet preswirl. For the case of clearance flow between the stator and rotor cans, influence of inlet preswirl is not so significant as the IR is not large enough.

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • 제7권2호
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

고속 회전축 베어링 계의 외부 댐핑에 관한 연구 (A Study on the External Damping for High Speed Rotor-Bearing System)

  • 한동철;정선모
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.698-705
    • /
    • 1986
  • 본 연구에서는 윤활이론에 따라 명확히 계산되고 그 신빙성이 실험적으로 검 증된 "동압유막 댐퍼"의 감쇠계수를 이용하여 외부댐핑을 갖는 회전축-구름베어링계와 회전축-저어널베어링계의 진동특성을 해석하고저 한다. 또한 해석결과를 토대로 회 전축계의 진동특성에 미치는 특성수 및 설계변수를 명확히 도출하여 동특성을 고려한 회전축계의 최적설계에 기여하고저 한다. 기여하고저 한다.

공작기계 주축계의 진동특성해석에 관한 연구 (Dynamic Characteristics Analysis of a Machine-Tool Spindle System)

  • 김석일;곽병만;이후상;정재호
    • 한국정밀공학회지
    • /
    • 제8권2호
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

강성계수가 복합재 광학판 성능에 미치는 영향성 연구 (Influence of Stiffness Coefficients on Optical Performance in Composite Optical Substrate)

  • 김경표
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.762-769
    • /
    • 2017
  • 준등방성 라미네이트내의 확장강성 계수는 방사방향으로균일하지만, 굽힘강성 계수는 플라이 적층순서에 의해 방사방향으로 변화한다. 이 논문에서는 복합재 광학에서 사용되는 단방향섬유 복합재료와 무작위로 분포된 단섬유 복합재료로 이루어진 세 가지 유형의 준 등방성 라미네이트 반사경내의 굽힘강성 계수의 방사방향의 변화량을 비교하였다. 단섬유 복합재료 반사경 방사방향의 확장강성 계수와 굽힘강성 계수는 균일하게 나타나는 반면, 단방향섬유 복합재료 반사경의 경우에는 굽힘강성 계수의 방사방향으로의변화량이 11%에서 많게는 26%까지 변화하는 것으로 나타났다. 또한 강성계수의 차이로 인한 굽힘-비틀림-커플링 효과 등 강성 민감도 또한 큰 것으로 나타났다. 이러한 요소는 정밀성이 요구되는 광학분야에 복합재 반사경의 적용을 어렵게 할 커다란 문제점으로 인식되며, 이러한 복합재료의 이방성 성질로 인한 필연적인방사형 방향으로의 강성계수의 변화 및 그 영향성을 줄이기 위해서는 단섬유나 무작위로 공간에 흩어져있는 섬유 복합재료를 사용하는 것이 복합재 반사경내에 존재하는 굽힘강성 계수의 변화를 제거하는 하나의 방법이다.

섭동법을 이용한 공기윤활 슬라이더 베어링의 동특성 해석 (An Analysis of Dynamic Characteristics of Air-Lubricated Slider Bearing by Using Perturbation Method)

  • 강태식;최동훈;정태건
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1520-1528
    • /
    • 2000
  • This study presents a method for determining bearing stiffness and damping coefficients of air-lubricated slider bearing, and shows influences of air-bearing surface geometry(recess depth, crown an d pivot location) on flying attitude and dynamic characteristics. To derive the dynamic lubrication equation, the perturbation method is applied to the generalized lubrication equation which based on linearized Boltzmann equation. The generalized lubrication equation and the dynamic lubrication equation are converted to a control volume formulation, and then, the static and dynamic pressure distributions are calculated by finite difference method. The recess depth and crown of the slider show significantly influence on flying attitude and dynamic characteristics comparing with those of pivot location.

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.