• 제목/요약/키워드: Step-Down DC-DC converter

검색결과 82건 처리시간 0.044초

Comparison of Conventional DC-DC Converter and a Family of Diode-Assisted DC-DC Converter in Renewable Energy Applications

  • Zhang, Yan;Liu, Jinjun;Ma, Xiaolong;Feng, Junjie
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.203-216
    • /
    • 2014
  • In the conventional dc-dc converter, a pair of additional diode and the adjacent passive component capacitor/inductor can be added to the circuit with an X-shape connection, which generates a family of new topologies. The novel circuits, also called diode-assisted dc-dc converter, enhance the voltage boost/buck capability and have a great potential for high step-up/step-down power conversions. This paper mainly investigates and compares conventional dc-dc converter and diode-assisted dc-dc converter in wide range power conversion from the aspects of silicon devices, passive components requirements, electro-magnetic interference (EMI) and efficiency. Then, a comprehensive comparison example of a high step-up power conversion system was carried out. The two kinds of boost dc-dc converters operate under the same operation conditions. Mathematical analysis and experiment results verify that diode-assisted dc-dc converters are very promising for simultaneous high efficiency and high step-up/step-down power conversion in distributed power supply systems.

A Forward-Integrated Buck DC-DC Converter with Low Voltage Stress for High Step-Down Applications

  • Adivi, Maedeh Ghanbari;Yazdani, Mohammad Rouhollah
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.356-363
    • /
    • 2018
  • The combination of a buck converter and a forward converter can be considered to accomplish a high step-down non-isolated converter. To decrease the insufficient step-down ratio of a regular buck converter and to distribute switch voltage stress, a forward-integrated buck (FIB) converter is proposed in this paper. The proposed interleaved DC-DC converter provides an additional step-down gain with the help of a forward converter. In addition to its simple structure, the transformer flux reset problem is solved and an additional magnetic core reset winding is not required. The operational principle and an analysis of the proposed FIB converter are presented and verified by experimental results obtained with a 240 W, 150 V/24 V prototype.

절연형 이중 강압 직류-직류 컨버터의 동특성 해석 및 제어회로 설계 (Dynamic Analysis and Control Circuit Design of Isolated Double Step-Down DC-DC Converter)

  • 하헌철;김한상;최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.229-230
    • /
    • 2015
  • This paper presents practical details about control-loop design and dynamic analysis for a voltage-mode controlled isolated double step-down DC-DC converter. Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of isolated double step-down DC-DC converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

온칩된 커패시터 채배기법 적용 보상회로를 갖는 DC to DC 벅 변환기 설계 (Design of a Step-Down DC-DC converter with On-chip Capacitor multiplyed Compensation circuit)

  • 박승찬;임동균;윤광섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.537-538
    • /
    • 2008
  • A step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in 0.18um CMOS standard process. In an effort to improve low load efficiency, this paper proposes the PFM (Pulse Frequency modulation) voltage mode 1MHz switching frequency step-down DC-DC converter with on-chip compensation. Capacitor multiplier method can minimize error amplifier compensation block size by 20%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87% for the output voltage of 1.8V (input voltage : 3.3V), maximum load current 500mA, and 0.14% output ripple voltage. The total core chip area is $mm^2$.

  • PDF

Transformerless Three-Level DC-DC Buck Converter with a High Step-Down Conversion Ratio

  • Zhang, Yun;Sun, Xing-Tao;Wang, Yi-Feng;Shao, Hong-Jun
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.70-76
    • /
    • 2013
  • For high power high step-down dc-dc conversion applications, conventional three-level dc-dc converters are subject to extreme duty cycles or increased volume and cost due to the use of transformers. In this paper, a transformerless three-level dc-dc buck converter with a high step-down conversion ratio is proposed. The converter comprises two asymmetrical half bridges, which are of the neutral point clamped structures. Therefore, the output pulse voltage of the converter can be obtained in terms of the voltage difference between the two half bridges. In order to realize harmonious switching of the converter, a modulation strategy with capacitor voltages self balance is presented. According to the deduced output dc voltage function, transformerless operation without extreme duty cycles can be implemented. Experimental results from a 1kW prototype verify the validity of the proposed converter. It is suitable for ship electric power distribution systems.

강압형 스위치드-커패시터 DC-DC 컨버터의 동특성해석 및 제어회로 설계 (Dynamic Analysis and Control Design of a Step-Down Switched-Capapcitor Dc-Dc Converter)

  • 최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2000
  • In this paper dynamic analyses and control design of a step-down switched-capacitor dc-dc converter are presented. Open-loop dynamics of the converter are analyzed using the stage-space averaging technique. A systmatic control design method that offers excellent closed-loop performance for the converter is proposed, The analysis results and dynamic performance of the converter are verified using 18 W experimental converter that delivers a 5V/3.5V output from a 11-16V input source.

  • PDF

스마트 사물인터넷 기기용 저리플 방식의 스텝다운 컨버터 분석 (Analysis of Step-Down Converter with Low Ripple for Smart IoT Devices)

  • 김다솔;알라딘;구진선;쿠마르;송한정
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.641-644
    • /
    • 2021
  • Wearable devices and IoT are being utilized in various fields, where all systems are developing in the direction of multi-functionality, low power consumption, and high speed. In this paper, we propose a DC -DC Step-down C onverter for IoT smart devices. The proposed DC -DC Step-down converter is composed of a control block of the power supply stage. It also consists of an overheat protection circuit, under-voltage protection circuit, an overvoltage protection circuit, a soft start circuit, a reference voltage circuit, a lamp generator, an error amplifier, and a hysteresis comparator. The proposed DC-DC converter was designed and fabricated using a Magnachip / Hynix 180nm CMOS process, 1-poly 6-metal, the measured results showed a good match with the simulation results.

소형 전자기기를 위한 스위치드 커패시터 방식의 강압형 DC-DC 변환기 설계 (Design of Step-down DC-DC Converter using Switched-capacitor for Small-sized Electronics Equipment)

  • 권보민;허윤석;송한정
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.4984-4990
    • /
    • 2010
  • 기존의 DC-DC Converter에서는 전압 변화 및 에너지 축적소자로서 자성부품인 인덕터를 사용하여 자속 발생에 의한 전력 손실로 효율이 낮아지고, 자성부품의 부피가 크고 무거우며 가격이 비싸 반도체 칩으로 집적화하기에 문제점을 가지고 있다. 이러한 문제점을 개선하기 위해 본 논문에서는 인덕터없는 스위치드 커패시터 방식을 이용한 저전력 강압형 CMOS DC-DC Converter를 제안한다. 제안된 DC-DC Converter는 0.5um 공정을 이용하여 설계하였으며, 설계된 DC-DC 컨버터는 200kHz의 주파수로 동작하며 96%이상의 전력효율을 cadence 시뮬레이션을 통하여 얻을 수 있다.

저 전압 트리거형 ESD 보호회로를 탑재한 저 전압 Step-down DC-DC Converter 설계 (The Design of low voltage step-down DC-DC Converter with ESD protection device of low voltage triggering characteristics)

  • 육승범;이재현;구용서
    • 전기전자학회논문지
    • /
    • 제10권2호통권19호
    • /
    • pp.149-155
    • /
    • 2006
  • In this study, the design of low voltage DC-DC converter with low triggering ESD (Electro-Static Discharge) protection circuit was investigated. The purpose of this paper is design optimization for low voltage(2.5V to 5.5V input range) DC-DC converter using CMOS switch. In CMOS switch environment, a dominant loss component is not switching loss but conduction loss at 1.2MHz switching frequency. In this study a constant frequency PWM converter with synchronous rectifier is used. And zener Triggered SCR device to protect the ESD phenomenon was designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 8V.

  • PDF

A New High Efficient Bi-directional DC/DC Converter in the Dual Voltage System

  • Lee Su-Won;Lee Seong-Ryong;Jeon Chil-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.343-350
    • /
    • 2006
  • This paper introduces a new high efficient bi-directional, non-isolated DC/DC converter. Through variations of the topology of the conventional Cuk converter, an optimum bi-directional DC/DC converter is proposed. Voltage and current in the proposed DC/DC converter are continuous. Furthermore, the efficiency in both step-up and step-down mode is improved over that of the conventional bi-directional converter. To prove the validation for the proposed converter, simulations and experiments are executed with a 300W bi-directional converter.