DOI QR코드

DOI QR Code

A Forward-Integrated Buck DC-DC Converter with Low Voltage Stress for High Step-Down Applications

  • 투고 : 2017.04.21
  • 심사 : 2017.10.18
  • 발행 : 2018.03.20

초록

The combination of a buck converter and a forward converter can be considered to accomplish a high step-down non-isolated converter. To decrease the insufficient step-down ratio of a regular buck converter and to distribute switch voltage stress, a forward-integrated buck (FIB) converter is proposed in this paper. The proposed interleaved DC-DC converter provides an additional step-down gain with the help of a forward converter. In addition to its simple structure, the transformer flux reset problem is solved and an additional magnetic core reset winding is not required. The operational principle and an analysis of the proposed FIB converter are presented and verified by experimental results obtained with a 240 W, 150 V/24 V prototype.

키워드

E1PWAX_2018_v18n2_356_f0001.png 이미지

Fig. 1. Buck converter with a series input dc voltage.

E1PWAX_2018_v18n2_356_f0002.png 이미지

Fig. 2. Proposed forward integrated buck (FIB) converter.

E1PWAX_2018_v18n2_356_f0003.png 이미지

Fig. 3. Key waveforms of the proposed converter.

E1PWAX_2018_v18n2_356_f0004.png 이미지

Fig. 4. Equivalent circuit for each of the operating intervals.

E1PWAX_2018_v18n2_356_f0005.png 이미지

Fig. 5. Voltage conversion ratio versus the duty cycle of theproposed converter with n=1 for a regular buck converter, aregular forward converter (n=1) and the buck converter with atapped inductor (n = 1).

E1PWAX_2018_v18n2_356_f0006.png 이미지

Fig. 6. Voltage conversion ratio versus the duty cycle of theproposed converter under different turn ratios.

E1PWAX_2018_v18n2_356_f0007.png 이미지

Fig. 7. PWM control scheme of the proposed converter.

E1PWAX_2018_v18n2_356_f0008.png 이미지

Fig. 8. Photo of the power section of the prototype

E1PWAX_2018_v18n2_356_f0009.png 이미지

Fig. 9. Voltage and current waveforms of: (a) S1 (time scale1μS/div), (b) S1 (time scale 250nS/div), (c) D1, (d) D3, (e) D4.

E1PWAX_2018_v18n2_356_f0010.png 이미지

Fig. 10. Voltage and current waveforms of: (a) S2, (b) D2.

E1PWAX_2018_v18n2_356_f0011.png 이미지

Fig. 11. Efficiency comparison between the proposed converterand a conventional interleaved buck converter.

E1PWAX_2018_v18n2_356_f0012.png 이미지

Fig. 12. Dynamic response of the proposed converter (n=1).

TABLE I COMPARISON BETWEEN THE PROPOSED CONVERTER AND THREE OTHER CONVERTERS

E1PWAX_2018_v18n2_356_t0001.png 이미지

TABLE II SEMICONDUCTOR CURRENT STRESS ANALYSIS

E1PWAX_2018_v18n2_356_t0002.png 이미지

TABLE III PARAMETERS OF THE IMPLEMENTED PROTOTYPE

E1PWAX_2018_v18n2_356_t0003.png 이미지

TABLE IV IMPORTANT LOSSES IN THE PROPOSED CONVERTER

E1PWAX_2018_v18n2_356_t0004.png 이미지

참고문헌

  1. M. Bendali, C. Larouci, T. Azib, C. Marchand, and G. Coquery, "Design methodology of an interleaved buck converter for onboard automotive application, multiobjective optimisation under multi-physic constraints," IET Electr. Syst. Transp., Vol. 5, No. 2, pp. 53-60, Nov. 2015. https://doi.org/10.1049/iet-est.2013.0045
  2. Y. Zhang, X.T. Sun, Y. F. Wang, and H. J. Shao, "Transformerless three-level DC-DC buck converter with a high step-down conversion ratio," J. Power Electron., Vol. 13, No. 1, pp. 70-76, Jan. 2013. https://doi.org/10.6113/JPE.2013.13.1.70
  3. M. Pahlevaninezhad, J. Drobnik, P. K. Jain, and A. Bakhshai, "A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 920-933, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161063
  4. S. Kai, Z. Li, X. Yan, and J. M. Guerrero, "A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage," IEEE Trans. Power Electron., Vol. 26, No. 10, pp. 3032-3045, Oct. 2011. https://doi.org/10.1109/TPEL.2011.2127488
  5. M. Esteki, E. Adib, H. Farzanehfard and S. A. Arshadi, "Auxiliary circuit for zero-voltage-transition interleaved pulse-width modulation buck converter," IET Power Electron., Vol. 9, No. 3, pp. 568-575, Mar. 2016. https://doi.org/10.1049/iet-pel.2014.0687
  6. F. Marvi, E. Adib and H. Farzanehfard, "Efficient ZVS synchronous buck converter with extended duty cycle and low-current ripple," IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5403-5409, Sep. 2016. https://doi.org/10.1109/TIE.2016.2558483
  7. Q. Luo, B. Zhu, W. Lu, and L. Zhou, "High step-down multiple-output LED driver with the current auto-balance characteristic," J. Power Electron., Vol. 12, No. 4, pp. 519-527, Jul. 2012. https://doi.org/10.6113/JPE.2012.12.4.519
  8. K. Yao, Y. Mao, M. Xu, and F. C. Lee, "Tapped-inductor buck converter for high-step-down DC-DC conversion," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 775-780, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850920
  9. K. Yao, Y. Qiu, M. Xu, and F. C. Lee, "A novel winding-coupled buck converter for high-frequency, high-step-down DC-DC conversion," IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1017-1024, Sep. 2005.
  10. P. Xu, J. Wei, and F. C. Lee, "Multiphase coupled-buck converter-a novel high efficient 12 V voltage regulator module," IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 74-82, Jan. 2003. https://doi.org/10.1109/TPEL.2002.807082
  11. R. J. Wai and J. J. Liaw, "High-efficiency coupled-inductorbased step-down converter," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4265-4279, Jun. 2016. https://doi.org/10.1109/TPEL.2015.2470105
  12. X. Song, C. W. Siu, C. T. Siew, and C. K. Tse, "A family of exponential step-down switched-capacitor converters and their applications in two stage converters," IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1870-1880, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2270290
  13. M. Esteki, B. Poorali, E. Adib, and H. Farzanehfard, "Interleaved buck converter with continuous input current, extremely low output current ripple, low switching losses, and improved step-down conversion ratio," IEEE Trans. Ind. Electron., Vol. 62, No. 8, pp. 4769-4776, Aug. 2015. https://doi.org/10.1109/TIE.2015.2397881
  14. I.-O. Lee, S.-Y. Cho, and G.-W. Moon, "Interleaved buck converter having low switching losses and improved step-down conversion ratio," IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3664-3675, Aug. 2012. https://doi.org/10.1109/TPEL.2012.2185515
  15. K. I. Hwu, W. Z. Jiang and P. Y. Wu, "An expandable four-phase interleaved high step-down converter with low switch voltage stress and automatic uniform current sharing," IEEE Trans. Ind. Electron., Vol. 63, No. 10, pp. 6064-6072, Oct. 2016. https://doi.org/10.1109/TIE.2016.2573749
  16. C. F. Chuang, C. T. Pan, and H. C. Cheng, "A novel transformer-less interleaved four-phase step-down DC converter with low switch voltage stress and automatic uniform current sharing characteristics," IEEE Trans. Power Electron., Vol. 31, No. 1, Jan. 2015.
  17. C. T. Pan, C. F. Chuang, and C. C. Chu, "A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress," IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5290-5299, Oct. 2014. https://doi.org/10.1109/TIE.2014.2301774
  18. M. Esteki, B. Poorali, E. Adib, and H. Farzanehfard, "High step-down interleaved buck converter with low voltage stress," IET Power Electron., Vol. 8, No. 12, pp. 2352-2360, Dec. 2015. https://doi.org/10.1049/iet-pel.2014.0976
  19. J. H. Park and B. H. Cho, "Nonisolation soft-switching buck converter with tapped-inductor for wide-input extreme step-down applications," IEEE Trans. Circuits Syst. I: Reg. Papers, Vol. 54, No. 8, pp. 1809-1818, Aug. 2007. https://doi.org/10.1109/TCSI.2007.902482
  20. M. R. Yazdani, H. Farzanehfard, and J. Faiz, "Classification and comparison of EMI mitigation techniques in switching power converters - A review," J. Power Electron., Vol. 11, No. 5, pp. 767-777, Sep. 2011. https://doi.org/10.6113/JPE.2011.11.5.767