• Title/Summary/Keyword: Steganalysis

Search Result 52, Processing Time 0.019 seconds

Ensemble Deep Learning Features for Real-World Image Steganalysis

  • Zhou, Ziling;Tan, Shunquan;Zeng, Jishen;Chen, Han;Hong, Shaobin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4557-4572
    • /
    • 2020
  • The Alaska competition provides an opportunity to study the practical problems of real-world steganalysis. Participants are required to solve steganalysis involving various embedding schemes, inconsistency JPEG Quality Factor and various processing pipelines. In this paper, we propose a method to ensemble multiple deep learning steganalyzers. We select SRNet and RESDET as our base models. Then we design a three-layers model ensemble network to fuse these base models and output the final prediction. By separating the three colors channels for base model training and feature replacement strategy instead of simply merging features, the performance of the model ensemble is greatly improved. The proposed method won second place in the Alaska 1 competition in the end.

Detecting Hidden Messages Using CUSUM Steganalysis based on SPRT (SPRT를 기반으로 하는 누적합 스테간 분석을 이용한 은닉메시지 감지기법)

  • Ji, Seon-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • Steganography techniques can be used to hide data within digital images with little or no visible change in the perceived appearance of the image. I propose a steganalysis to detecting hidden message in sequential steganography. This paper presents adjusted technique for detecting abrupt jumps in the statistics of the stego signal during steganalysis. The repeated statistical test based on CUSUM-SPRT runs constantly until it reaches decision. In this paper, I deal with a new and improved statistic $g_t$ by computing $S^{t^*}_j$.

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

ACA Based Image Steganography

  • Sarkar, Anindita;Nag, Amitava;Biswas, Sushanta;Sarkar, Partha Pratim
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.266-276
    • /
    • 2013
  • LSB-based steganography is a simple and well known information hiding technique. In most LSB based techniques, a secret message is embedded into a specific position of LSB in the cover pixels. On the other hand, the main threat of LSB-based steganography is steganalysis. This paper proposes an asynchronous-cellular-automata(ACA)-based steganographic method, where secret bits are embedded into the selected position inside the cover pixel by ACA rule 51 and a secret key. As a result, it is very difficult for malicious users to retrieve a secret message from a cover image without knowing the secret key, even if the extraction algorithm is known. In addition, another layer of security is provided by almost random (rule-based) selection of a cover pixel for embedding using ACA and a different secret key. Finally, the experimental results show that the proposed method can be secured against the well-known steganalysis RS-attack.

  • PDF

AN IMPROVED JPEG2000 STEGANOGRAPHY USING QIM AND ITS EVALUATION BY STEGANALYSIS

  • Ishida, Takayuki;Yamawaki, Kazumi;Noda, Hideki;Niimi, Michiharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.466-469
    • /
    • 2009
  • This paper presents a modified QIM-JPEG2000 steganography which improves the previous JPEG2000 steganography using quantization index modulation (QIM). Post-embedding changes in file size and PSNR by the modified QIM-JPEG2000 are smaller than those by the previous QIM-JPEG2000. Steganalysis experiments to determine whether messages are embedded in given JPEG2000 images show that the modified QIM-JPEG2000 is more secure than the previous QIMJPEG2000.

  • PDF

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

Steganalysis Using Histogram Characteristic and Statistical Moments of Wavelet Subbands (웨이블릿 부대역의 히스토그램 특성과 통계적 모멘트를 이용한 스테그분석)

  • Hyun, Seung-Hwa;Park, Tae-Hee;Kim, Young-In;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper, we present a universal steganalysis scheme. The proposed method extract features of two types. First feature set is extracted from histogram characteristic of the wavelet subbands. Second feature set is determined by statistical moments of wavelet characteristic functions. 3-level wavelet decomposition is performed for stego image and cover image using the Haar wavelet basis. We extract one features from 9 high frequency subbands of 12 subbands. The number of second features is 39. We use total 48 features for steganalysis. Multi layer perceptron(MLP) is applied as classifier to distinguish between cover images and stego images. To evaluate the proposed steganalysis method, we use the CorelDraw image database. We test the performance of our proposed steganalysis method over LSB method, spread spectrum data hiding method, blind spread spectrum data hiding method and F5 data hiding method. The proposed method outperforms the previous methods in sensitivity, specificity, error rate and area under ROC curve, etc.

Experimental Verification of the Versatility of SPAM-based Image Steganalysis (SPAM 기반 영상 스테그아날리시스의 범용성에 대한 실험적 검증)

  • Kim, Jaeyoung;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.526-535
    • /
    • 2018
  • Many steganography algorithms have been studied, and steganalysis for detecting stego images which steganography is applied to has also been studied in parallel. Especially, in the case of the image steganalysis, the features such as ALE, SPAM, and SRMQ are extracted from the statistical characteristics of the image, and stego images are classified by learning the classifier using various machine learning algorithms. However, these studies did not consider the effect of image size, aspect ratio, or message-embedding rate, and thus the features might not function normally for images with conditions different from those used in the their studies. In this paper, we analyze the classification rate of the SPAM-based image stegnalysis against variety image sizes aspect ratios and message-embedding rates and verify its versatility.

Improvement of Steganalysis Using Multiplication Noise Addition (곱셉 잡음 첨가를 이용한 스테그분석의 성능 개선)

  • Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.23-30
    • /
    • 2012
  • This paper proposes an improved steganalysis method to detect the existence of secret message. Firstly, we magnify the small stego noise by multiplying the speckle noise to a given image and then we estimate the denoised image by using the soft thresholding method. Because the noises are not perfectly eliminated, some noises exist in the estimated cover image. If the given image is the cover image, then the remained noise will be very small, but if it is the stego image, the remained noise will be relatively large. The parent-child relationship in the wavelet domain will be slighty broken in the stego image. From this characteristic, we extract the joint statistical moments from the difference image between the given image and the denoised image. Additionally, four statistical moments are extracted from the denoised image for the proposed steganalysis method. All extracted features are used as the input of MLP(multilayer perceptron) classifier. Experimental results show that the proposed scheme outperforms previous methods in terms of detection rates and accuracy.

Digital Video Steganalysis Based on a Spatial Temporal Detector

  • Su, Yuting;Yu, Fan;Zhang, Chengqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.360-373
    • /
    • 2017
  • This paper presents a novel digital video steganalysis scheme against the spatial domain video steganography technology based on a spatial temporal detector (ST_D) that considers both spatial and temporal redundancies of the video sequences simultaneously. Three descriptors are constructed on XY, XT and YT planes respectively to depict the spatial and temporal relationship between the current pixel and its adjacent pixels. Considering the impact of local motion intensity and texture complexity on the histogram distribution of three descriptors, each frame is segmented into non-overlapped blocks that are $8{\times}8$ in size for motion and texture analysis. Subsequently, texture and motion factors are introduced to provide reasonable weights for histograms of the three descriptors of each block. After further weighted modulation, the statistics of the histograms of the three descriptors are concatenated into a single value to build the global description of ST_D. The experimental results demonstrate the great advantage of our features relative to those of the rich model (RM), the subtractive pixel adjacency model (SPAM) and subtractive prediction error adjacency matrix (SPEAM), especially for compressed videos, which constitute most Internet videos.