DOI QR코드

DOI QR Code

Experimental Verification of the Versatility of SPAM-based Image Steganalysis

SPAM 기반 영상 스테그아날리시스의 범용성에 대한 실험적 검증

  • Kim, Jaeyoung (Department of Electronic Engineering, Pukyong National University) ;
  • Park, Hanhoon (Department of Electronic Engineering, Pukyong National University) ;
  • Park, Jong-Il (Department of Computer and Software, Hanyang University)
  • 김재영 (부경대학교 전자공학과) ;
  • 박한훈 (부경대학교 전자공학과) ;
  • 박종일 (한양대학교 컴퓨터소프트웨어학과)
  • Received : 2018.05.16
  • Accepted : 2018.07.10
  • Published : 2018.07.30

Abstract

Many steganography algorithms have been studied, and steganalysis for detecting stego images which steganography is applied to has also been studied in parallel. Especially, in the case of the image steganalysis, the features such as ALE, SPAM, and SRMQ are extracted from the statistical characteristics of the image, and stego images are classified by learning the classifier using various machine learning algorithms. However, these studies did not consider the effect of image size, aspect ratio, or message-embedding rate, and thus the features might not function normally for images with conditions different from those used in the their studies. In this paper, we analyze the classification rate of the SPAM-based image stegnalysis against variety image sizes aspect ratios and message-embedding rates and verify its versatility.

많은 스테가노그래피 알고리즘들이 연구되어왔고 스테가노그래피의 연구로 인해서 스테가노그래피 알고리즘이 적용된 스테고 영상을 검출하기 위한 스테그아날리시스 또한 연구되어왔다. 특히 영상 스테그아날리시스의 경우에 ALE, SPAM, SRMQ와 같은 통계적인 특성에 기반한 수제 특징이 영상으로부터 추출되고 이 특징을 기계학습 알고리즘을 사용하여 스테고 영상의 분류에 사용하였다. 하지만 이러한 연구들은 단지 단일 영상의 크기, 비밀 정보 삽입 비율에 대해서만 고려하였으며 다양한 영상의 크기, 가로세로 비, 비밀 정보의 비율들에 대해서는 고려하지 않았다. 결과적으로 SPAM 특징이 다양한 조건하에서도 범용성있게 사용가능한지에 대한 검증은 이루어지지 않았다. 본 논문에서는 SPAM 기반의 영상 스테그아날리시스를 사용하여 영상의 크기, 가로 세로 비 비밀 정보 삽입 비율의 다양한 조건에 대한 분류율을 분석하여 SPAM 특징이 일관적인 분류 결과를 보여줄 수 있는지 확인해본다.

Keywords

References

  1. J. Kim and H. Park, "A statistical approach for improving the embedding capacity of block matching based image steganography, Journal of Broadcast Engineering, Vol. 22, No. 5, 2017.
  2. W. Sohn and L. N. T. dung, "A blind watermarking scheme using singular vector based on DWT/RDWT/SVD," Journal of Broadcast Engineering, Vol. 21, No. 2, pp. 149-156, 2016. https://doi.org/10.5909/JBE.2016.21.2.149
  3. J. Seon-Su, "A study of optimal image steganography based on LSB techniques," Journal of the Korea Industrial Information Systems Reasearch, Vol. 20, No. 3, pp. 29-36, 2015.
  4. D. Wu and W. Tsai, "A steganographic method for images by pixel-value differencing," Pattern Recognition Latters, Vol. 24, pp. 1613-1626, 2003. https://doi.org/10.1016/S0167-8655(02)00402-6
  5. J. Kim and H. Park, "Image steganography using layered pixel-value differencing," Jounal of Broadcasting Engineering, Vol. 22, No. 3, 2017.
  6. G. Cancelli, G. Doerr, I. J. Cox and M. Barni, "Detection of ${\pm}$1 LSB steganography based on the amplitude of histogram local extrema," ICIP, 2008.
  7. T. Pevny. P. Bas and J. Fridrich, "Steganalysis by subtractive pixel adjacency matrix," IEEE Transactions on Information Forensics and Security, Vol. 5, No. 2, pp. 215-224, 2010. https://doi.org/10.1109/TIFS.2010.2045842
  8. J. Fridrich, Member, IEEE and J. Kodovsky, "Rich models for steganalysis of digital images," IEEE Transactions on Information Forensics and Security, Vol. 7, No. 3, pp. 868-882, 2012. https://doi.org/10.1109/TIFS.2012.2190402
  9. J. Kodovsky, J. Fridrich, Member, IEEE and V. Holub, "Ensemble classifiers for steganalysis of digital media," IEEE Transactions on Information Forensics and Security, Vol. 7, No. 2, pp. 432-444, 2012. https://doi.org/10.1109/TIFS.2011.2175919
  10. J. Ye, J. Ni, Member, IEEE and Y. Yi, "Deep learning hierarchical representations for image steganalysis," IEEE Transactions on Information Forensics and Security, Vol. 12, No. 11, pp. 2545-2557, 2017. https://doi.org/10.1109/TIFS.2017.2710946
  11. L. Pibre, J. Pasquet, D. ienco and M. Chaumont, "Deep learning is a good steganalysis tool when embedding key is reused for different im ages even if there is a cover source-mismatch," Society for Imagng Science and Technology, 2016.
  12. S. Kim and D. S. Han, "Real time traffic light detection algorithm based on color map and multilayer HOG-SVM," Journal of Broadcast Engineering, Vol. 22, No. 1, pp. 62-69, 2017. https://doi.org/10.5909/JBE.2017.22.1.62
  13. C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, Vol. 20, pp. 273-297, 1995.
  14. C. Chan and L. M. Cheng, "Hiding data in images by simple LSB substitution," Pattern Recognition, Vol.. 37, pp. 469-474, 2004. https://doi.org/10.1016/j.patcog.2003.08.007
  15. P. Bas, T. Filler and T. Pevny, "'Break our steganographic system': The ins and outs of organizing boss," in Proc. Int. Workshop Inf. Hiding, pp. 59-70, 2011.