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Abstract 

 
The Alaska competition provides an opportunity to study the practical problems of real-world 
steganalysis. Participants are required to solve steganalysis involving various embedding 
schemes, inconsistency JPEG Quality Factor and various processing pipelines. In this paper, 
we propose a method to ensemble multiple deep learning steganalyzers. We select SRNet and 
RESDET as our base models. Then we design a three-layers model ensemble network to fuse 
these base models and output the final prediction. By separating the three colors channels for 
base model training and feature replacement strategy instead of simply merging features, the 
performance of the model ensemble is greatly improved. The proposed method won second 
place in the Alaska 1 competition in the end. 
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1. Introduction 

In recent years, researchers have achieved brilliant results in image steganalysis using 
homologous datasets. With the development of deep learning technology, researchers have 
proposed many more steganalyzers by deep convolutional neural networks (CNNs) 
[1][2][3][4][5]. Their performance is even better than traditional rich model feature sets 
[6][7][8], but most of them are evaluated on single-source datasets. In practice, images usually 
come from a variety of sources and have different processing histories. Most of the existing 
steganalysis algorithms do not consider mixed datasets from different sources that are close to 
the scenario of the real world.  

The Alaska competition1 provides a good opportunity to bring steganalysis into the 
scenario of the real world. It provides a multi-sources RAW image dataset. In the competition, 
participants are required to solve various embedding schemes, inconsistency JPEG Quality 
Factor (QF) and various processing pipelines that appear in actual steganalysis.  

We propose a method to ensemble various deep learning steganalysis. We select XuNet 
[3] and RESDET [4] as basic deep learning steganalysis models. We separate the three color 
channels (Y, Cb, and Cr) of color JPEG images to train the deep learning base models, 
respectively. Then the output features of all base models are merged to train a model ensemble 
network. The model ensemble network greatly improves the steganalysis performance. 
Meanwhile, we generate several fixed-QF compressed datasets with high-frequency QFs. By 
replacing the features of base models trained on the original mixed QF Alaska dataset by the 
ones of base models trained on the fixed-QF datasets, the final performance can be further 
improved. The final result of the proposed method won 2nd place in the Alaska 1 competition. 

In this summary, we first introduce some related works and the proposed method. Then 
we describe experiments in Alaska 1 and Alaska 2 datasets with our proposed method, alone 
with the result and our analysis. The final part is the concluding remarks and conclusions. 

2. Related Work 

There are several deep convolutional neural networks such as XuNet, RESDET and SRNet 
that have a good performance on single-source JPEG datasets. It takes a lot of time to train a 
good SRNet, so we don’t use SRNet in the Alaska 1 competition and only use SRNet in the 
Alaska 2 experiment. We choose XuNet and RESDET as base models in the Alaska 1 
competition. In this section, the structure features of XuNet and RESDET are first explained. 
Since the feature fusion method is important in the model ensemble stage, this section also 
describes common feature fusion strategies. 

2.1 The Structure Features of XuNet 

XuNet is a 20-layers CNN. First of all, it uses an undecimated DCT of size 4x4 to project 
every single input to 16 different frequency bands. The DCT kernels are fixed in training. The 
output from the DCT layer is passed to 20 convolutional layers and a global average pooling 
layer. This part of the model learns an optimized function to transform each of the pre-
processed inputs to a 384-D feature vector for classification. Every convolutional layer is 
followed by a Batch-Normalization (BN) to reduce the internal covariant shift [9]. The non-
linear activation function is the most widely used Rectified Linear Unit (ReLU). The 
convolutional kernels have a unified size of 3x3. In CNN, pooling is achieved by a 

 
1 https://alaska.utt.fr/ 
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convolutional layer with a stride of 2. After going through the pooling layer, the spatial sizes 
of data are cut by half and the number of channels doubles. 

2.2 The Structure Features of RESDET 

RESDET contains four parts: a DCT layer, three RBLOCK (resnet-like blocks), three 
DBLOCK (densenet-like blocks), and a global average pooling layer. The input of RESDET 
is filtered and truncated images with a shape of (511,511,16). Then we use 16 DCT basis 
patterns to convolve the decompressed image. 

RBLOCK has two branches: a body branch and a shortcut branch. The body branch 
contains two convolutional layers, whose kernel size is 3x3. Batch-Normalization (BN) 
follows both convolutional layers with ReLU as the non-linear activation function. The 
shortcut path has a convolutional layer to resize the input x to a different dimension to match 
that of the body path. The stride of the convolutional layer is set to be 2. The operation of “add” 
is used to connect two branches. Through each RBLOCK, the number of the output feature 
maps increases by 12. 

DBLOCK is composed of one convolutional layer, a BN layer and a ReLU layer. Each 
convolution kernel size is 3x3. The number of output feature maps is fixed to 12. The learned 
feature maps are concatenated with the input feature maps, like the dense connection in 
DenseNet [10] does. After the final DBLOCK, we use a global average-pooling to calculate 
the spatial average of each feature map. 

2.3 Feature Fusion Strategies 

After training the base models and using them to extract image features, we fuse features and 
train the ensemble network. Usually, there are two strategies of feature fusion based on two 
methods of feature combination [11]: 

1. Serial feature fusion: The serial feature fusion is a process of feature extraction based 
on the serial feature combination method, and the resulting feature is called a serial fused 
feature. 

2.Parallel feature fusion: The parallel feature fusion is a process of feature extraction 
based on the parallel feature combination method, and the resulting feature is called parallel 
fused feature. 

3. Proposed Method 

The proposed framework is illustrated in Fig. 1. The entire framework consists of two stages. 
The first stage is to train different base models. The second stage is to perform ensemble on 
these trained base models. In this part, by concatenating each base model feature, three full 
connection layers are applied for further training to obtain the final prediction. 
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Fig. 1. The proposed framework architecture. The three channels (Y, Cb, and Cr) of a color JPEG 

image are separately trained using two base models. Here we only use two competitive base models, 
the Base Model I is XuNet [3] and the Base Model II is RESDET [4]. 

3.1 Base Model Training Stage 

We select the XuNet and the RESDET as two base models. These two deep learning 
steganalysis models have competitive performance in JPEG domain steganalysis. Since the 
target object is color JPEG images, the three channels (Y, Cb, and Cr) are separately trained 
by each base model. Just like existing JPEG steganalysis methods, JPEG images are 
decompressed to the spatial domain before feeding into the network. For XuNet, we apply a 
20-layers convolution with a bottleneck structure. For RESDET, we apply a 12-layers 
RESDET with a bottleneck structure and dense connection. Same as XuNet [3] and RESDET 
[4], images are also convolved by sixteen 4 × 4 DCT basis patterns of the first layer of the 
network, to help the CNN architecture focus on steganography artifacts rather than image 
contents for faster training convergence. The sixteen DCT basis patterns are defined as 
𝐵𝐵(𝑘𝑘,𝑙𝑙) = �𝐵𝐵𝑚𝑚𝑚𝑚

(𝑘𝑘,𝑙𝑙)� , 0 ≤ 𝑘𝑘, 𝑙𝑙 ≤ 4, 0 ≤ 𝑚𝑚,𝑛𝑛 ≤ 4; 

        𝐵𝐵𝑚𝑚𝑚𝑚
(𝑘𝑘,𝑙𝑙) =  𝜔𝜔𝑘𝑘𝜔𝜔𝑙𝑙

4
𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋𝑘𝑘(2𝑚𝑚+1)

8
𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋𝑙𝑙(2𝑚𝑚+1)

8
,𝜔𝜔0 = 1

2
,𝜔𝜔𝑘𝑘 = 1 𝑓𝑓𝑐𝑐𝑓𝑓 𝑘𝑘 > 0.  (1) 

    
After the convolution of these sixteen 4×4 DCT basis patterns, we also apply truncation with 
threshold 𝑇𝑇 = 8. Both networks receive 512 × 512 input. Considering that the Alaska dataset 
contains images of different sizes, which leads to inconsistencies in training and testing, we 
crop all the images to size of 512 × 512. As mentioned in Gibouloto et al. [12], the JPEG 
Quality Factor and Processing pipeline of the dataset have a major impact on the performance 
of JPEG steganalysis. The inconsistency of the JPEG Quality Factor between the training and 
inference phases results in a significant drop in detection performance. The Alaska dataset’s 
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JPEG Quality Factors range from 60 to 100. Fig. 2 shows the QF distribution of the Alaska 
dataset. From Fig. 2 we find that the QFs in {75, 80, 85, 90, 95, 98, 100} account for 75.19% 
of the total number of images.  

Fig. 2. The numbers of images compressed with corresponding QFs in the Alaska dataset. 
 
Therefore, we generate two types of dataset to train the base models. The first dataset is 

the original Alaska dataset, which contains 49,061 cover stego pairs of mixed QF images. Here 
we randomly select 39,248 for training and the remaining 9813 as the validation set. The 
second type of datasets contains seven datasets where the images in the same dataset have the 
same QF. The seven QFs are {75, 80, 85, 90, 95, 98, 100}. In each dataset, all the images are 
obtained by re-developing the original raw with the scripts from the competition website2. In 
addition to the QF settings, other parameters such as random image size, preprocessing 

 
2 https://alaska.utt.fr/material 
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methods, and embedding methods remain the same. For each base model, there will be 3 CNNs 
trained on the original Alaska data set and 7 × 3 CNNs trained on the seven fixed-QF data sets, 
corresponding to three color channels. 

3.2 Model Ensemble Stage 

The above base models act as feature extractors in the Model Ensemble Stage. After training 
the above base models, we introduce 3 feature selection methods. No replacement means that 
all the features are obtained from base models trained on the original Alaska data set. Replace 
means that for images with QFs in 75, 80, 85, 90, 95, 98, and 100, the features obtained from 
the base models trained by the original Alaska data set are replaced with the features obtained 
from the base models trained on corresponding QF data sets. Merged all feature means that 
all the trained base model features are merged and fed into the model ensemble network. 

3.3 Preprocessing and Parameters Setting 

For each input image, a single XuNet outputs 384-dimension feature vector, and a single 
RESDET outputs 84-dimension feature vector. For each image with three color channels, the 
total feature dimension is 384 × 3 + 84 × 3 = 1404. During training, we additionally added a 
random rotation of 0, 90, 180, or 270 degrees and then apply a random upper or lower 
mirroring to the input image inside each training epoch. The detailed parameter settings of the 
model ensemble network and each base model are as follows: 
 XuNet and RESDET: Batch size is set to 50 during training. The learning rate is 

initialized with 0.001 and the maximum number of epochs is set to 200. 
 Model ensemble network: Batch size is set to 128 during training. The learning rate is 

initialized with 0.0001 and the maximum number of epochs is set to 250. 
Both base models receive 512 × 512 input. We apply Sigmoid Cross Entropy Loss as the 

loss function in all networks. Batch normalization is also involved in each layer. During all 
training phase, we apply the stochastic gradient descent with warm restarts (SGDR) [13] 
to adjust the learning rate. SGDR can speed up convergence and jump out of  
the local minimum to some extent. The learning rate 𝑎𝑎𝑙𝑙𝑎𝑎ℎ𝑎𝑎 decays as follows: 

α =  𝛼𝛼𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 ∗ (1
2

 (1 − 𝛽𝛽) �1 + cos�𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜋𝜋
𝑇𝑇1

�� + 𝛽𝛽)   (2) 
where 𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑙𝑙 is the initial learning rate. 𝑇𝑇1 is the initial decay step. 𝑇𝑇𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑛𝑛𝑖𝑖 records the 

current decay process. We set 𝛽𝛽 = 0, which is the minimum learning rate value as a fraction of 
the learning rate. In all experiments we set the first decay step as the ratio of the total number 
of training images to the batch size: 𝑇𝑇1 =  number of training image

batch size
. 𝑇𝑇𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑛𝑛𝑖𝑖 is initialized to 0 

and increased by one every time the variables have been updated during iteration. 

4. Large-scale Experiments on Alaska v1  

4.1 Experiment Result and Analysis 

This part of the experiments is implemented based on Tensorflow 
(https://github.com/tensorflow). The GPU used in all experiments is NVIDIA Tesla P100. The 
training set of the processed Alaska dataset contains a total of 49,061 JPEG images. We 
randomly select 39,248 images as the experimental training set, and the remaining 9813 as the 
validation set, which gives a ratio of 4:1. The target steganography algorithm includes J-
UNIWARD [14], UED [15], EBS [16] and ns-F5[17]. The left-top 512 × 512 regions of all 
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the images are cropped to fit the input size of the network. 
 Different feature selection method has a different impact on the final result. Table 1 
shows the comparison of different ways to select features for the model ensemble network. 
 

Table 1. Comparison of feature selection. 
Method No replacement Replace Merged all feature 

Feature Dimensions 
(XuNet and RESDET) 

(384+84)x3=1404 (384+84)x3=1404 1404x8=11232 

False alarm 18.50% 16.73% 22.38% 
Miss Detection 27.49% 23.07% 35.11% 

Accuracy 77.00% 80.10% 71.26% 
  

The results show that the Replace strategy achieves a larger improvement from 77% 
validation accuracy to 80.1%. Simply merging features results in performance degradation. 
One of the possible reasons is that the base models trained with the fixed-QF dataset have 
improved the performance on corresponding QF images but have a greater performance 
degradation on other QFs. Therefore, we apply Replace to select the features entering the 
model ensemble network.  

Since the magnitudes of these features obtained by different classifiers vary, we adopt 
linear normalization which maps feature values to [0,1]. Then all the features are concatenated 
into one feature vector as the input of the model ensemble network. As shown in Fig. 1, the 
model ensemble network consists of three fully connected layers. The successive layers 
contain 256, 32, and 1 neuron, respectively. The predicted value of the target image is output 
by a Sigmoid function which labels 1 for stego images and 0 for cover images. The loss 
function is Sigmoid Cross Entropy Loss. The final prediction for each image is obtained by 
the model ensemble network. Each image only gets one final prediction value. The final 
ranking is obtained by sorting these predictions in descending order. The more likely an image 
is stego, the higher it ranks. 

 
Table 2. Performance comparison of models with color channels and model ensemble. 

Color 
channel 

Y channel Cb channel Cr channel  

Model XuNet RESDET XuNet RESDET XuNet RESDET Model 
ensemble 

False 
Alarm 

28.51% 27.19% 20.31% 28.52% 20.44% 30.34% 16.72% 

Miss 
Detection 

42.53% 41.44% 36.30% 28.55% 38.27% 30.34% 23.07% 

Accuracy 64.47% 65.67% 71.69% 71.46% 70.64% 70.84% 80.01% 

Local 
MD005 

66.5% 69.6% 56.9% 58.2% 58.2% 56.4% 37.4% 
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Table 3. Comparison of image cropping to 512 × 512 in different ways. 

Method Left-top crop Central crop Random crop L1 crop 
Validation accuracy 71.69% 71.2% 69.46% 70.40% 

Local MD005 56.71% 57.10% 59.01% 57.60% 
 
In Table 2, we compare the validation performance of each color channel on both base 

models. XuNet and RESDET have similar performance on each color channel. Among the 
three color channels, the Cb channel performs the best. The performance of the Cb channel is 
close to the Cr channel, since their intrinsic properties are similar. In all models, the miss 
detection rate is higher than the false alarm rate, which indicates that these models are more 
error-prone to the stego image. After the model ensemble, the False Alarm Rate reaches a 
minimum of 16.72%, while the Miss Detection Rate reaches a minimum of 23.07%. This 
shows that the model ensemble can effectively reduce the validation False Alarm Rate and 
Miss Detection Rate. 

 
Table 4. Comparison between early fusion and separating the color band on XuNet. 

Color channel Y channel Cb channel Cr channel Early fusion 

False alarm 28.51% 20.31% 20.44% 24.17% 
Miss detection 42.53% 36.3% 38.27% 40.75% 

Accuracy 64.47% 71.69% 70.64% 67.54% 
Local MD005 66.5% 56.9% 58.2% 67.30% 

 
Table 5. Final submission result 

Submit ID MD005(Ranking) minPE FP50 

Yyousfi1 24.37(1st) 14.26 0.62 
2016130231 50(2nd) 25.03 5.18 

 
Table 6. Training epoch numbers when getting the best score 

Training epochs when getting the best score 

Model XuNet RESDET Model ensemble 
Epoch Number 62  62  206  
 
Since the Alaska dataset contains images of different sizes, we crop all the images in the 

same size to avoid size mismatch. Table 3 shows the comparison of different ways to crop 
images to 512 × 512. In Table 3, Left-top/Central crop indicates that all images have been left-
top/central cropped with size 512 × 512. Random crop indicates that the image is randomly 
cropped with size 512 × 512 under the block structure satisfying 8 × 8. The L1 crop from 
Tsang and Fridrich [18] is achieved by cropping the image with size 512x512 with the closest 
local variance histogram to the whole image local variance histogram in the L1 norm sense. 
The results show that various cropping methods achieve similar validation accuracy. The Left-
top crop achieves the highest validation accuracy, so we finally decide to apply it to all images. 
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One of the main reasons that we train CNN separately with each color band is that there are 
no channel-related embedding schemes in the Alaska competition. All the embedding 
algorithms independently embed the information in each color channel. Each of these channels 
is treated as a separate image for embedding. Table 4 show the comparison between early 
fusion and separating the color band. The results show that the performance of early fusion 
(which inputs 3 color channels to the same network) has declined a lot. The validation accuracy 
of early fusion drops by nearly 3% compared to the Cb and Cr channels. For the efficiency 
reason, we choose to separate the color channels and use one CNN per channel. 

Fig. 3. Comparison of validation accuracy of the two base models and model ensemble on each 
JPEG Quality Factor (QF). The red bin is the performance of the model ensemble, the blue bin is the 

performance of XuNet, and the orange bin is the performance of RESDET. The red dashed box 
indicates that the features are obtained from base models trained on fixed-QF datasets. 
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Fig. 4. The validation accuracy of the model ensemble of each QF. The yellow bin is the 

validation accuracy, and the blue bin is the number of validation images corresponding to each QF. 
 

Fig. 3 shows the validation accuracy comparison between base models and model 
ensemble on different QFs. The performance of the two base models is relatively close. On 
most QF values, the accuracy of RESDET is slightly higher than that of XuNet. After adopting 
the model ensemble, the performance of each QF has been greatly improved. It shows that the 
model ensemble can effectively improve the overall classification ability. In the case of 
training on the fixed-QF dataset, the model ensemble has also achieved a relatively high 
improvement. 

Fig. 4 shows the validation result of the model ensemble on each JPEG Quality Factor. 
As the JPEG Quality Factor declines, the accuracy of the validation set increases. Note that 
the accuracy of model ensemble on images with QFs of {75, 80, 85, 90, 95, 98, 100} is {90%, 
89%, 85%, 84%, 74%, 66%, 73%}, respectively. 

Table 5 is the final submission result of the model ensemble in the Alaska 1 competition 
and Table 6 shows the training epoch numbers when getting the best score. The testing dataset 
of the Alaska competition consists of 5000 JPEG images. After the XuNet iterates for 62 
epochs, RESDET iterates for 62 epochs, and the model ensemble network iterates for 206 
epochs, the model ensemble network achieves our best submission result. The final model 
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ensemble result reaches an MD005(Missed detection for False alarm of 0.05) of 50% and a 
minPE of 14.26%. The final submission of our proposed method achieves 2nd place in the 
Alaska competition. The first place in the competition finds a better solution which reaches an 
MD005 of 24.37%. 

4.2 Further Discussions 

Comparing to the 1st place in the competition, we still have a lot of room for improvement. 
We also experiment on SRNet with the Cb channel. The input size is set to 512 × 512. 
According to the GPU memory limit, we set the batch size to 10 in training. We set the 
maximum iterations to 500,000. SRNet takes much more time to converge than XuNet. The 
final accuracy of the local validation set is 69.73%. Compared to XuNet’s 71.69% validation 
accuracy, the accuracy of SRNet is slightly lower. The possible reason for this result is that 
we have reduced the batch size so that the SRNet does not fully converge within 500,000 
iterations. It takes us one week to reach the maximum iterations of SRNet. Therefore, we did 
not apply SRNet as our base model in the competition considering the huge time consumption. 
If we do have had more time and more computational power, SRNet seems to be a better 
choice as a base model. 

Other parameters including image size and embedding schemes also play a key role in 
steganalysis. As we all know that steganalyzers usually require a fixed input image size. 
Initially we tried to use Global Average Pooling at the fully connected layer in XuNet, which 
forces the final feature maps to size 1 × 1, but the validation accuracy drops to 50%. Another 
way to solve this problem is to train deep learning models for each size, but it is time 
consuming. As for embedding schemes, the Alaska dataset randomly selects one of the four 
embedding schemes to embed the image with different payloads. Therefore, it is difficult for 
us to know which embedding schemes and payloads are used for the testing samples. We 
conduct a simple mismatch experiment where we train the XuNet on Cb channels on mixed 
embedding schemes dataset, while test on only JUNIWARD but with randomly payloads 
embedded dataset. The validation accuracy drops to 65.83%, lower than the case without 
mismatching. Considering the mismatch problems, if we do have more time, we would provide 
more matching dataset and train the base models in the matching situation, then ensemble 
those base models in the same way. The proposed model ensemble method can also satisfy 
with such a scenario. 

5. Large-scale Experiments on Alaska v2 

5.1 Parameters Setting and Data Preprocessing  

We use the Alaska 2 competition datasets3 to validate our ensemble multiple deep learnig 
steganalyzers. We choose 30000 JPEG images of Alaska 2 datasets as cover with QFs of 75, 
90, and 95 (10000 each). The stego is generated through information embedding by J-
UNIWARD with embedding rates of 0.4 bpnzAC. The embed payload is 0.4 bits per non-zero 
AC DCT coefficient. The image size is 512x512. Thus, we get 60000 JPEG images where 
cover and stego both have 30000. The datasets are randomly split into training (36000), 
validation (18000), and test sets (6000). 

The base model also uses XuNet and RESDET as above and adds SRNet to improve the 
ensemble performance. When we use different channel data to train base models, we find that 

 
3 https://www.kaggle.com/c/alaska2-image-steganalysis/ 
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the DCT layer and the difference in JPEG read format have a great impact on the final training 
result. To test the ensemble performance with more channel data, we add CrCb, and YCrCb 
features to train the ensemble model. 

The RESDET Y and YCrCb channel models need DCT layers and the JPEG toolbox to 
decompress images. The RESDET Cr, Cb, and CrCb channel models need DCT layers, but 
the input is directly read by OpenCV and round. Otherwise, the training process is hard to 
converge.  

The XuNet Y and YCrCb channel models need DCT layers and the JPEG toolbox to 
decompress images. The RESDET Cr and CrCb channel models do not need the DCT layer, 
but the input is directly read by OpenCV and round. The RESDET Cb channel model does not 
need the DCT layer, but the input is directly read by OpenCV and not round.  

The SRNet Y channel model needs the DCT layer and the JPEG toolbox to decompress 
images. The SRNet Cr channel model also needs the DCT layer and the input is directly read 
by OpenCV and round. The SRNet Cb, CrCb, and YCrCb channel models need DCT layers, 
but the input is directly read by OpenCV. Table 6 shows the detail of the training preprocesses 
of different channel models.  

 

Table 6. The training preprocesses of different channel models 
Channel Y Cr Cb CrCb YCrCb 

 
RESDET 

DCT, 
JPEG 

decompress 

DCT, OpenCV 
read and round 

DCT, OpenCV 
read and round 

DCT, OpenCV 
read and round 

DCT, 
JPEG 

decompress 
XuNet DCT, 

JPEG 
decompress 

No DCT, 
OpenCV read 

and round 

No DCT, 
OpenCV read 

No DCT, 
OpenCV read 

and round 

DCT, 
JPEG 

decompress 
 

SRNet 
DCT, 
JPEG 

decompress 

DCT, OpenCV 
read and round 

DCT, OpenCV 
read 

DCT, OpenCV 
read 

DCT, 
OpenCV read 

 

5.2 Experiment Result and Analysis 

We get the performance comparison of each model with each color channel and present the 
validation and test accuracy in the Table 7 and Table 8 respectively. From the two tables, we 
can see RESDET has the best performance in Y, Cr, and Cb channels. XuNet performs the 
best in the CrCb channel and SRNet performs the best in the YCrCb channel. Among the three 
color channels, the Y channels have the best validation accuracy and test accuracy. The Cb 
channel performance seems worse. The Y channel RESDET model has the highest validation 
accuracy 70.58% and test accuracy 70.4%. 

 
Table 7. Validation accuracy of base models and color channels 

Channel Y Cr Cb CrCb YCrCb 

RESDET 70.58% 63.32% 57.52% 56.72% 58.83% 
XuNet 68.2% 63.2% 56.37% 67.49% 56.03% 
SRNet 69.56% 59.31% 55.06% 59.5% 62.13% 
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Table 8. Test accuracy of base models and color channels 
Channel Y Cr Cb CrCb YCrCb 

RESDET 70.4% 63.5% 57.58% 56.5% 58.9% 
XuNet 68.3% 63.1% 56.7% 67% 56% 
SRNet 69.3% 58.3% 54% 59.37% 60.73% 

  
In the model ensemble stage, we find that using the model antepenultimate output tensor’s 

mean, variance, maximum value, and minimum value across high and width axes as features 
is better than only using the model global average pooling layer output tensor. The forward 
method which has four groups can get feature dimension 84*8 (RESDET), 384*8 (XuNet) and 
512*8 (SRNet). While the latter method which only has one group can get feature dimension 
84*1 (RESDET), 384*1 (XuNet) and 512*1 (SRNet). Table 9 shows that the four-group-
feature model ensemble has a good performance than the one-group-feature model. Here, we 
use the serial without weights feature fusion method to combine the features. 
 

Table 9. Different feature ensemble models’ validation and test accuracy 
Features Validation accuracy Test accuracy 

One group 76.54% 76.83% 
Four group 77.37% 78.17% 

 
Then, we fuse the three-channel features to train the ensemble model. Because Alaska 2 

competition only provides JPEG images, we can’t produce identical QF datasets to use the 
replace feature selection method.  

In this part, we use the no replacement feature selection method. We test serial feature 
fusion and parallel feature fusion with and without weights. Specifically, we experiment with 
six feature fusion methods as shown in Table 10, along with their validation and test accuracy. 
The weights for RESDET, XuNet, and SRNet are 84/980, 384/980, and 512/980 respectively. 

 
Table 10. Different feature fusion methods ensemble model validation and test accuracy 

Feature fusion Dimensions Validation accuracy Test accuracy 

Serial w/o weights (84+384+512)x24 77.37% 78.17% 
Serial w/ weights (84+384+512)x24 77.51% 77.9% 

Parallel w/o weights (84+384+512)x8 77.46% 77.77% 
Parallel w/ weights (84+384+512)x8 77.47% 77.88% 

0 padding w/ weights 512x8 77.46% 77.97% 
0 padding w/o weights 512x8 77.48% 78.02% 

 
From Table 10, we can see that all feature fusion methods have close validation accuracy. 

The serial fusion with weights gets the best validation accuracy of 77.51%. The serial fusion 
without weights has the best test accuracy of 78.17%. Comparing with the best channel test 
accuracy in Table 8---the Y channel’s 70.4%--- the model ensemble improves the test 
accuracy for about 8%. 
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In the above experiments, we only fuse channels Y, Cr, and Cb. In this part, we try to fuse 
Y, Cr, Cb, CrCb, and YcrCb with serial fusion without weights. There are three feature 
selection plans: Y, Cr, Cb, and CrCb; Y, Cr, Cb, and YCrCb; Y, Cr, Cb, CrCb, and YCrCb. 
The experiment result is shown in Table 11. 

 
Table 11. Different feature selection methods’ ensemble model validation and test accuracy 

Features selection Validation accuracy Test accuracy 

Y,Cr, and Cb 77.37% 78.17% 
Y,Cr,Cb, and CrCb 78.16% 78.45% 
Y,Cr,Cb, andYCrCb 77.48% 78.05% 

Y,Cr,Cb,CrCb, and YCrCb 78.07% 78.45% 
 
Comparing the result of Table 10 with Table 11, we can see that adding CrCb channel 

data to fusion slightly improves the validation and test accuracy. The best validation accuracy 
is 78.16% and the best test accuracy is 78.45%. However, adding YCrCb channel data does 
not have a positive effect on the final test result. The best feature selection method is using Y, 
Cr, Cb, and CrCb channel data. 

6. Conclusions and Future Work 

In this paper, we present an ensemble of deep learning steganalyzers. We apply XuNet and 
RESDET as our base models and design a model ensemble network to train the base models 
output features. We apply the replacing strategy rather than simply merging all the features. 
The experimental results show that the model ensemble can effectively improve the accuracy 
of the base steganalyzers. The main contribution of our proposed method is listed as follows: 
 The model ensemble achieves better performance than a single base model and provides 

a unique ranking of the test images from multiple classifiers. 
 The replacing strategy can better avoid QF mismatch than simply merging all classifiers 

features. 
 We find that separating the color band is better than early fusion in detecting no channel-

related embedding schemes. 
In future work, we will continue to focus on a more effective model ensemble method 

and find a better solution for real-world steganalysis. For example, we will try to use Siamese 
CNN [19] as a base model and combine different models and feature fusion strategies to 
improve our ensemble model. Besides, using an adversarial network [20] to enhance the 
security of the model is a good research direction. 
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