• Title/Summary/Keyword: Steering System

Search Result 1,049, Processing Time 0.029 seconds

Control Logic Using Torque Map for a Column-Type Electric Power Steering System (토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직)

  • 김지훈;송재복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

Improved Design in Fishing Operation System for Small Inshore and Coastal Fishing Vessels -II -Design of a Remote Steering System- (소형 연근해 어선의 조업 시스템 개선에 관한 연구-II -원격 조타 시스템의 설계-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • A combination steering system was designed to provide the flexibility in controlling the steering wheel in fishing operations of the inshore and coastal fishing vessels. The designed steering system basically is consisted of three driving units, such as a electrically driven hydraulic pump unit with a solenoid control valve, a DC motor driven hydraulic pump unit and a manually driven hydraulic pump unit, and two controllers to provide remote steering on the deck, respectively. The steering torque was measured and analyzed to investigate the dynamic performance of the developed steering system. The steering system showed excellent linearity between the working pressure of cylinder and the torque of rudder post in case of increasing in rudder angle from $5^{\circ} to 35^{\circ}$ that is, the steering torque increased from $10.4 kgf{\cdot}m$ to $105.3 kgf{\cdot}m$ and then the working pressure of cylinder fluctuated from 6.3 kgf/cm super(2) to 16.4 kgf/cm super(2). The steering time of 3.2 sec in remote hydraulic steering by the on/off solenoid valve control was much faster than 13.2 sec in the manual steering by the helmsman and 11.6 sec in the electric steering by a DC motor, and then it was verified that operation of one unit does not affect other units in combination steering system in any way. Furthermore, the developed steering system can be remotely controlled in multiple stations of the deck during the fishing operation and the automatic pilot steering unit can be used to add hydraulic steering.

  • PDF

Empirical Modeling of Steering System for Autonomous Vehicles

  • Kim, Ju-Young;Min, Kyungdeuk;Kim, Young Chol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.937-943
    • /
    • 2017
  • To design an automatic steering controller with high performance for autonomous vehicle, it is necessary to have a precise model of the lateral dynamics with respect to the steering command input. This paper presents an empirical modeling of the steering system for an autonomous vehicle. The steering system here is represented by three individual transfer function models: a steering wheel actuator model from the steering command input to the steering angle of the shaft, a dynamic model between the steering angle and the yaw rate of the vehicle, and a dynamic model between the steering command and the lateral deviation of vehicle. These models are identified using frequency response data. Experiments were performed using a real vehicle. It is shown that the resulting identified models have been well fitted to the experimental data.

A Study on the Control Algorithm for a Ball Screw Type of Motor Driven Power Steering System (Ball screw형 전동식 동력 조향 장치의 제어에 관한 연구)

  • 윤석찬;왕영용;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.124-134
    • /
    • 2000
  • The power wteering system for automobiles is becoming core popular for supporting steering efforts of the drivers, especially for a parking lot maneuver. Though hydraulic power steering has been widely used for a long time, the efficiency of that is not high enough. The motor driven power steering system can solve the problems associated with the hydraulic power steering system. In this study, dynamic model and control algorithm of the ball screw type of MDPS systenem have been derived and analysed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, the additional scheme is proposed to the conventional power boosting control algorithm. Through simulations, control gain effects to the steering angle gain in the frequency domain were verified. The steering returnability and steering torque phase lag in on-center handing test were performed also.

  • PDF

Development of Human Driver Model based on Neuromuscular System for Evaluation of Electric Power Steering System (전동식 조향 장치의 성능 평가를 위한 신경 근육계 기반 운전자 모델 개발)

  • Lee, Sunghyun;Lee, Dongpil;Lee, Jaepoong;Chae, Heungseok;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2017
  • This paper presents a lateral driver model with neuromuscular system to evaluate the performance of electric power steering (EPS). Output of most previously developed driver models is steering angle. However, in order to evaluate EPS system, driver model which results in steering torque output is needed. The proposed lateral driver model mainly consists of 2 parts: desired steering angle calculation and conversion of steering angle into steering torque. Desired steering angle calculation part results in steering angle to track desired yaw rate for path tracking. Conversion of steering angle into torque is consideration with neuromuscular system. The proposed driver model is investigated via actual driving data. Compared to other algorithms, the proposed algorithm shows similar pattern of steering angle with human driver. The proposed driver can be utilized to efficiently evaluate EPS system in simulation level.

Study on Modularization of Components for Cost Reduction of Sail Yacht Steering System

  • Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.469-474
    • /
    • 2020
  • This study aims to improve the price competitiveness of a steering system with a relatively high cost portion among sail yacht components. Hence, the components of the steering system were analyzed, and steering system modularization was proposed. The fabrication processes before and after the application of modularization was presented. For modularization, primary components such as the pedestals and quadrants of the steering system were developed, and the structural safety of the components was reviewed. It was confirmed that the manufacturing cost of the developed steering system decreased by approximately 33% compared with the existing system. The new steering system presented herein is expected to contribute to the localization of components and price competitiveness of sail yachts.

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.

Reliability Analysis of 4WS Elements Subjected to Dynamic Load (동적하중을 고려한 4륜 조향장치 부품의 신뢰성 해석)

  • 양성모
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.69-73
    • /
    • 1998
  • With increased loads in steered wheels and wider section tires the effort required at the steering wheel makes the driver's job very tiring and difficult. Improvements such as an increase in the mechanical efficiency of the steering system or lower steering box ratios help the reduce driver fatigue. Now using of power steering is increasing. It needs to be considering parts size of steering system as using power steering. This paper presents adjust part size of steering system form estimating reliability according to reducing torque under the dynamic load, In this paper, the spider of universial joint is selected to prove relation between steering and power steering reliability.

  • PDF

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

The Development of a Beam Steering System for X-band 2-D Phased Array Antenna (X-대역 2차원 위상배열안테나 빔조향 시스템 개발)

  • Kim, Doo-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.92-98
    • /
    • 2008
  • A beam steering system of X-band 2-D phased array antenna for radar application is developed. The beam steering system consists of real-time command generator, beam steering unit, control PCB of array module and power supply. It plays a role of beam steering and on-line check of phased array antenna. The performance of beam steering system is verified with pulse timing of current control in phase shifters and measurement of far-field of phased array antenna. The developed beam steering system offers basic technology to develop full-scale beam steering system of multi-function radar.