• Title/Summary/Keyword: Steel Production

Search Result 838, Processing Time 0.027 seconds

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.

Current Status of Domestic Recycling of Used Metallic Can (국내 금속캔 리싸이클링 현황)

  • Park, Hyungkyu;Shin, Shunmyung
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.62-67
    • /
    • 2014
  • Used metallic can should be recycled from the point of view of environmental preservation and resource recycling. Metallic can is one of EPR items, and classified into steel can and aluminum can according to the can body material. In Korea about eighty percent of metallic cans are made of steel. In this article, production of cans and current status on domestic recycling of used metallic cans in recent years(2008-2012) were surveyed. Recycled ratio by weight of used steel and aluminum cans was about 80.8% and 81.8%, respectively in 2012. Totally it reached 81.8%.

Effect of Stainless Steel Properties on Performance of Multi-layer Bellows (다층형 벨로우즈의 성능에 미치는 스테인리스강 물성의 영향)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Lee, R.G.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • Generally ferritic stainless steels are used for parts of exhaust system in commercial vehicle, because they have many advantages as low price and high corrosion resistant compared with austenitic stainless steels. Even though ferritic stainless steels have such various merits, austenitic stainless steels have been used to manufacture multi-layer bellows with complex geometry because of their high ductility. Recently, the mechanical properties of the ferritic stainless steels are getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of multi-layer bellows made of ferritic stainless steel like MH1 and 443CT was studied. Tensile test, ridging test and corrosion test were carried out to observe material properties of STS304, MH1 and 443CT. Three types of prototype bellows were made using STS304, MH1 and 443CT stainless steels, and stiffness and fatigue tests were carried out to evaluate performance of the prototype bellows.

A Study on Hardening Characteristics of Carbon Steel by Using Finite Element Method (유한요소법을 이용한 탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2011
  • Recently, from general machine parts and automobile parts using carbon steel to a mold, there has been efforts for improving durability and attrition resistance of these parts. Especially, heat treatment with laser which works fast and automatically can be used for the mass production with high quality. Moreover, local heat treatment can be used to handle with complex and precise parts. Accordingly, we analyzed hardening characteristics of carbon steel using the finite element method and compare the experimental results to have more reliability. We also proved the cause of thermal deformation with temperature and stress distribution by heat treatment. After these analysis and experimental, we found that each maximum hardness of the two tests was 728 Hv and 700 Hv, on condition of $1050^{\circ}C$ heating temperature, and 2 mm/sec laser speed. We also found that difference of surface stress-distribution was occurred, and this makes deformation mode up after heat treatment.

A Study on the Selection of Stainless Steel for Automotive Inside Mirror Joint by Vacuum Sintering (진공소결을 통한 자동차용 인사이드 미러 접합부의 스테인레스강 선정에 관한 연구)

  • Sung, Si-Myung;Jung, In-Ryung
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.36-40
    • /
    • 2018
  • The car requires an inside mirror installed between the driver's seat and the passenger's seat to ensure the driver's rear and side view of the driver. Inside mirrors must always be attached to the vehicle to ensure the driver's visibility. Inside mirrors attached to the windshield of a vehicle are always exposed to direct sunlight and should be semi-permanently usable in hot and humid summer weather in Korea. Therefore, the mirror mount, which is the junction of the inside mirror, is particularly important in corrosion resistance and wear resistance suitable for humidity. Mirror mounts are currently difficult to manufacture due to their reliance on powder molding technology in advanced countries such as Japan and Germany. This paper focuses on the fabrication of high corrosion resistant stainless mirror mounts by vacuum sintering technique and focuses on the selection of materials suitable for the production of mirror mounts through experiments of 300 series stainless steel and 400 series stainless steel manufactured by vacuum sintering.

Study on the Welding Parameters of Steel Pipes for Higher Sulfide Stress Corrosion Cracking Resistance for Field Application

  • Baek, Kwang Ki;Lee, Ho il;Lee, Chul Hwan
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • The Sulfide Stress Corrosion Cracking (SSCC) resistance of structural steels is one of the critical concerns for the operators, material designers, and fabricators of oil-field equipment, especially treating sour gas (H2S) containing fluids. As far as its fabricators concerned, the systematic care of welding parameters should be taken to obtain comparable SSCC resistance of their weldment to that of its base material. In this respect, every different type of welding joint design for this use should be verified to be SSCC-proof with relevant test procedures. In this study, the welding parameters to secure a proper SSCC resistance of steel pipe's weldments were reviewed on the Welding Procedure Qualification Records (WPQR), which had been employed for actual fabrication of an offshore structure for oil and gas production. Based on this review, a guideline of welding parameters, such as, heat input, welding consumable for Y.S. 65 ksi class steel pipe material is proposed in terms of the NACE criteria for SSCC resistance.

Characteristics of GMA Weld Zone on TiO2 Different Component Flux Cored Wire for S500 Grade Steel (TiO2 성분 플럭스충진와이어에 따른 S500강의 GMA 용접부 특성)

  • Yoo, Cheol;Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.335-342
    • /
    • 2015
  • Recently, the production of oil and gas at the arctic ocean and offshore has been growing. Accordingly, S500 steel with the high tensile strength and excellent toughness has been used and flux cored wire that can be welded to the S500 has been required. In this study, we carried out observation of microstructures, mechanical properties and CTOD (crack tip openning displacement) in the weld zone that GMA (gas metal arc) welded with different component of $TiO_2$ flux core wire (the main components, rutile or Ti-slag) for S500 steel. Weld zone produced with Ti-slag flux cored wire has formed a enough acicular ferrite and shown excellent impact toughness at $-40^{\circ}C$, tensile strength at room temperature and CTOD at $-20^{\circ}C$. As a result, the developed flux cored wire was suitable for S500 steel.

Causes of Delay in Khuzestan Steel Company Construction Projects

  • Saeb, Sajjad;Khayat, Navid;Telvari, Abdulrasoul
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.335-344
    • /
    • 2016
  • Construction project is a competitive business with high risk especially in developing countries like Iran which faces with many problems such as delay and time and costs increases. Thus, the first priority here is to determine the causes of prolongation of construction projects and to evaluate their importance. Khuzestan Steel Company (KSC) has made important contribution to the projects in Iran and in turn is required to finish them on time. In this study, an attempt was made to investigate the causes of delay in implementation of construction projects held by this company. Data was collected through questionnaire distributed among the sample including 10 owners, 10 consultants and 15 con-tractors. Accordingly, participants rated the causes in the questionnaire so the most important priorities of each area were specified using TOPSIS method. The results showed that according to the employers, consultants and contractors' viewpoints, the most important reason for delays in construction projects of KSC is related to the financial matters. Hence, according to the results obtained, causes for delays in the company's projects are largely related to the drilling permits and long administrative cycle to renew them. Besides, continuous production of steel in this company is another reason to delays of construction projects.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations

  • Korucu, H.;Gulkan, P.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.595-616
    • /
    • 2011
  • Impact experiments have been carried out on concrete slabs. The first group was traditionally manufactured, densely reinforced concrete targets, and the next were ordinary Portland and calcium aluminate cement based HPSFRC (High performance steel fiber reinforced concrete) and SIFCON (Slurry infiltrated concrete) targets. All specimens were hit by anti-armor tungsten projectiles at a muzzle velocity of over 4 Mach causing destructive perforation. In Part I of this article, production and experimental procedures are described. The first group of specimens were ordinary CEM I 42.5 R cement based targets including only dense reinforcement. In the second and third groups, specimens were produced using CEM I 42.5 R cement and Calcium Aluminate Cement (CAC40) with ordinary reinforcement and steel fibers 2 percent in volume. In the fourth group, SIFCON specimens including 12 percent of steel fibers without reinforcement were tested. A high-speed camera was used to capture impact and residual velocities of the projectile. Sample tests were performed to obtain mechanical properties of the materials. In the companion Part II of this study, numerical investigations and simulations performed will be presented. Few studies exist that examine high-velocity impact effects on CAC40 based HPSFRC targets, so this investigation gives an insight for comparison of their behavior with Portland cement based and SIFCON specimens.

Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy (Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향)

  • Kim, Jeong-Min;Lee, Gang-Rae;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.