• Title/Summary/Keyword: Steel Pipe

Search Result 1,031, Processing Time 0.027 seconds

Construction Stage Analysis of Structure Settlement Using Underpinning (언더피닝 공법을 이용한 구조물 침하에 대한 시공 단계 해석)

  • Lee, Jonghyop;Heo, Seungjin;Ok, Suyeol;Lim, Yunmook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.131-138
    • /
    • 2012
  • This paper aims to present accurately analytical modeling method for underpinning using uncertainty reduction, obtained from comparison between numerical analysis and Site measuring data during construction and service stages. Combination of various conditions should be considered for using numerical analysis to predict the behavior of the structure accurately, even though complexly considered the conditions, real construction should be secured the stability by applying the actual instrument measurement data because predicted results are including the considerable uncertainty. In order to secure the stability during construction, the real time instrument measurements together with numerical analysis results performed before construction state are complementary used actively. From the results of this study, the significant settlements are occurred not only in underpass structure of adjacent excavation area but also in the permanent steel pipe structures were analyzed. From the site measurement results of underpass settlement, the settlements are occurred in every stages of excavation, furthermore observed tendency is asymmetrical excavation patterns are settled more than symmetrical excavation patterns. The essential consideration points for numerical analysis are construction sequence, the direction of the existing facilities, the methods of elements modeling, the applied factors for nature of material and different results would be occurred depending upon inputting the above factors.

Corrosion Control in Water Pipes by Adjusting the Corrosivity of Drinking Water : Effect and impact of the Corrosion Inhibitor (수돗물 부식성 제어를 통한 수도관 부식방지 : 부식억제제별 효과와 영향에 대한 분석)

  • Park, Young-Bog;Park, Ju-Hyun;Park, Eun-Hee;Lee, Jin-Suk;Kim, Hyen-Ton;Choi, Young-June;Chung, Hyen-Mi;Huh, Yu-jeong;Choi, In-cheol
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.303-310
    • /
    • 2016
  • The tap water used in Seoul was found to be corrosive. Its corrosivity was effectively reduced by that the additions of alkali agent such as NaOH, $Ca(OH)_2$ and corrosion inhibitor such as $H_3PO_4$. For the corrosion test, carbon steel pipe 50 m long was exposed to the drinking water produced by a pilot plant at $36.5^{\circ}C$, similar to the existing process where it takes about 20 minutes to reduce the initial chlorine content of 0.5 mg/L to 0.05 mg/L. $CO_2$ and $Ca(OH)_2$ was added not only to control the Langelier index (LI) above -1.0 and but also, to increase the duration time of residual chlorine by about 6 times. The persistence effect of residual chlorine was in the order of $H_3PO_4$ > $Ca(OH)_2$ > NaOH. Measurements of weight loss showed that corrosion inhibition was effective in order of $Ca(OH)_2$ > $H_3PO_4$ > NaOH > no addition, where the concentrations of $Ca(OH)_2$ and phosphate were 5 ~ 10 mg/L (as $Ca^{2+}$) and 1 mg/L (as $PO{_4}^{3-}$), respectively.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

Optimal Section Design for Metal Press Door Impact Beam Development by 3-Point Bending Analysis (3점 굽힘 하중 해석을 통한 금속 판재형 도어 임팩트 단면형상 최적설계)

  • Kim, Sun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.166-172
    • /
    • 2019
  • A case study was performed in order to develop well-designed of thin plate door impact beam. The conventional impact beam was consisted of steel-pipe welded two brackets on the both side, which causes low productivity and high cost. In order to overcome those disadvantage, it is necessary to develop a new type of door impact; thin plate impact beam. The thin plate impact beam was not needed a welding procedure, which can lead low cost and high productivity. In order to maximally resist from an external force, the cross-section design should be well designed. 6 different cross-section design were proposed based on engineer's experience. Three point bending test was simulated those 6 different impact beam and compared the reaction forces. Among them, one case was chosen and redesigned for detail design.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand (조밀한 모래지반의 기초 인접에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee Tae-Hyung;Im Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.69-81
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of $150\sim300mm$, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed in a soil adjacent to footing (concept of 'soil reinforcement'). With the test results and soil deformation analysis, the reinforcement effect (relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is expected that we nay demonstrate the improvement of an efficiency and application in the design and construction of micropile.

An Experimental Study on the Reinforcement Effect of Installed Micropile under Footing on Dense Sand (조밀한 모래지반의 기초하부에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee, Tae-Hyung;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.191-200
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of 100~300mm, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed under footing(concept of "structure supporting"). With the test results and soil deformation analysis, the reinforcement effect(relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is hoped to demonstrate the improvement of an efficiency and application in the design and construction of micropile.