Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.1.097

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites  

Sokhandani, Navid (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology)
Setoodeh, AliReza (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology)
Zebarjad, Seyed Mojtaba (Department of Materials Science and Engineering, Engineering Faculty, Shiraz University)
Nikbin, Kamran (Department of Mechanical Engineering, Imperial College London)
Wheatley, Greg (College of Science and Engineering, James Cook University)
Publication Information
Advances in nano research / v.13, no.1, 2022 , pp. 97-111 More about this Journal
Abstract
In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.
Keywords
coefficient of friction; energy applications; mechanical properties; $SiO_2$ vinyl ester nanocomposites; wear resistance; wind turbine blades;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Das, S., Chattopadhyay, S., Dhanania, S., and Bhowmick, A.K. (2020), "Improved dispersion and physic-mechanical properties of rubber/silica composites through new silane grafting", Polym. Eng. Sci., 60(12), 3115-3134. https://doi.org/10.1002/pen.25541.   DOI
2 Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019a), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.   DOI
3 Yang, X., Yu, Z., Fang, W., Wan, Z., Qian, Q., Li, W., and Li, Q. (2022), "Improving antistatic and mechanical properties of glass fiber reinforced polypropylene composites through polar adsorption and anchoring effect of organic salt", Compos. Sci. Technol., 109285. https://doi.org/10.1016/j.compscitech.2022.109285.   DOI
4 Zhang, G., Lu, S., and Ke, Y. (2019), "Effects of silica nanoparticles on tribology performance of poly (Epoxy Resin-Bismaleimide)-based nanocomposites", Polym. Eng. Sci., 59(2), 274-283. https://doi.org/10.1002/pen.24901.   DOI
5 Zhou, T., Cheng, X., Pan, Y., Li, C., Gong, L. and Zhang, H. (2017), "Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying", Appl. Surf. Sci., 437, 321-328. https://doi.org/10.1016/j.apsusc.2017.12.146.   DOI
6 Fang, W., Yang, X., Li, Q., Li, M., and Xiao, G. (2020), "Improved mode I interlaminar fracture toughness of random polypropylene composite laminate via multiscale reinforcing formed by introducing functional nanofibrillated cellulose", Compos. B. Eng., 203, 108481. https://doi.org/10.1016/j.compositesb.2020.108481   DOI
7 O sterle, W., Dmitriev, A.I., Wetzel, B., Zhang, G., Hausler, I. and Jim, B.C. (2016), "The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite", Mater. Des., 93, 474-484. https://doi.org/10.1016/j.matdes.2015.12.175.   DOI
8 Palraj, S., Selvaraj, M., Maruthan, K. and Rajagopal, G. (2015), "Corrosion and wear resistance behavior of nano-silica epoxy composite coatings", Prog. Org. Coat., 81, 132-139. https://doi.org/10.1016/j.porgcoat.2015.01.005.   DOI
9 Rahmani, K., Wheatley, G., Sadooghi, A., Hashemi, S.J. and Babazadeh, J. (2021a), "The experimental analysis of creep and corrosion properties of polymeric tube reinforced by glass, carbon and Kevlar fibers", Mater. Res. Express, 8(6), 065307. https://doi.org/10.1088/2053-1591/ac0a00.   DOI
10 Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019b), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.   DOI
11 Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.   DOI
12 Feli, S. and Jalilian, M.M. (2016), "Experimental and optimization of mechanical properties of epoxy/nanosilica and hybrid epoxy/fiberglass/nanosilica composites", J. Compos. Mater., 50(28), 3891-3903. https://doi.org/10.1177/0021998315627198.   DOI
13 Ghahramani, P., Behdinan, K., Moradi-Dastjerdi, R., and Naguib, H.E. (2022), "Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS/MWCNT nanocomposites", Nanotechnol. Rev., 11(1), 55-64. https://doi.org/10.1515/ntrev-2022-0006.   DOI
14 Antunes, P.V., Ramalho, A. and Carrilho, E.V.P. (2014), "Mechanical and wear behaviours of nano and microfilled polymeric composite: Effect of filler fraction and size", Mater. Des., 61, 50-60. https://doi.org/10.1016/j.matdes.2014.04.056.   DOI
15 Abenojar, J., Tutor, J., Ballesteros, Y., del Real, J.C. and Martinez, M.A. (2017), "Erosion- wear, mechanical and thermal properties of silica filled epoxy nanocomposites", Compos. B. Eng., 120, 42-53. https://doi.org/10.1016/j.compositesb.2017.03.047.   DOI
16 Ahangaran, F., and Navarchian, A.H. (2020), "Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review", Adv. Colloid Interf. Sci., 286, 102298. https://doi.org/10.1016/j.cis.2020.102298.   DOI
17 Alsaadi, M., Bulut, M., Erklig, A. and Jabbar, A. (2018), "Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites", Compos. B. Eng., 152, 169-179. https://doi.org/10.1016/j.compositesb.2018.07.015.   DOI
18 Asif, M., Ramezani, M., Khan, K.A., Khan, M.A. and Aw, K.C. (2019), "Experimental and numerical study of the effect of silica filler on the tensile strength of a 3D-printed particulate nanocomposite", Comptes Rendus Mecanique, 347(9), 615-625. https://doi.org/10.1016/j.crme.2019.07.003.   DOI
19 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.   DOI
20 Rajaee, P., Ghasemi, F.A., Fasihi, M. and Saberian, M. (2019), "Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin", Compos. B. Eng., 173, 106803. https://doi.org/10.1016/j.compositesb.2019.05.014.   DOI
21 Moradi-Dastjerdi, R., and Behdinan, K. (2021a), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Math. Model., 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013 .   DOI
22 Constantinescu, D.M., Apostol, D.A., Picu, C.R., Krawczyk, K., Sieberer, M., Hadar, A. and Feuchter, M. (2018), "Fabrication of nanocomposites with silica nanoparticles", Mater. Today: Proc., 5(13), 26727-26732. https://doi.org/10.1016/j.matpr.2018.08.143.   DOI
23 Shaker, K., Nawab, Y. and Saouab, A. (2019), "Influence of silica fillers on failure modes of glass/vinyl ester composites under different mechanical loadings", Eng. Fract. Mech., 218, 106605. https://doi.org/10.1016/j.engfracmech.2019.106605.   DOI
24 Singh, A.K., Gupta, P., and Singh, P.K. (2018), "Evaluation of Mechanical and Erosive wear Characteristics of TiO2 and ZnO filled bi-directional E-glass fiber-based vinyl ester composites", Silicon, 10(2), 309-327. https://doi.org/10.1007/s12633-016-9447-3.   DOI
25 Rahmani, K., Wheatley, G., Sadooghi, A., Hashemi, S.J. and Babazadeh, J. (2021b), "The experimental investigation of hardness and wear behaviors of inner surface of the resin tubes reinforced by fibers", Results Eng., 11, 100273. https://doi.org/10.1016/j.rineng.2021.100273.   DOI
26 Mahrholz, T., Stangle, J. and Sinapius, M. (2009), "Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes", Compos. Part A Appl. Sci., 40(3), 235-243. https://doi.org/10.1016/j.compositesa.2008.11.008.   DOI
27 Manjunatha, C.M., Taylor, A.C., Kinloch, A.J. and Sprenger, S. (2010), "The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite", Compos. Sci. Technol., 70(1), 193-199. https://doi.org/10.1016/j.compscitech.2009.10.012.   DOI
28 Fang, W., Yang, X., Xu, X., Li, W., and Li, Q. (2021), "Quasistatic and low-velocity impact responses of polypropylene random copolymer composites with adjustable crystalline structures", Compos. B. Eng., 224, 109139. https://doi.org/10.1016/j.compositesb.2021.109139   DOI
29 Tuzemen, M. C ., Salamci, E., and Avci, A. (2017), "Enhancing mechanical properties of bolted carbon/epoxy nanocomposites with carbon nanotube, nanoclay, and hybrid loading", Compos. B. Eng., 128, 146-154. https://doi.org/10.1016/j.compositesb.2017.07.001.   DOI
30 Megahed, M., Megahed, A.A., and Agwa, M.A. (2018), "Mechanical properties of on/off-axis loading for hybrid glass fiber reinforced epoxy filled with silica and carbon black nanoparticles", Mater. Technol., 33(6), 398-405. https://doi.org/10.1080/10667857.2018.1454022.   DOI
31 Moradi-Dastjerdi, R., and Behdinan, K. (2021b), "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate", Appl. Energy, 293, 116947. https://doi.org/10.1016/j.apenergy.2021.116947.   DOI
32 Moradi-Dastjerdi, R., Malek-Mohammadi, H., and Momeni-Khabisi, H. (2017), "Free vibration analysis of nano-composite sandwich plates reinforced with CNT aggregates", ZAMM Z. Angew. Math. Me., 97(11), 1418-1435. https://doi.org/10.1002/zamm.201600209.   DOI
33 Tian, Y., Zhang, H. and Zhang, Z. (2017), "Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites", Compos. Part A Appl., 98, 1-8. https://doi.org/10.1016/j.compositesa.2017.03.007.   DOI
34 Sprenger, S. (2015), "Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: Review and outlook", J. Compos. Mater., 49(1), 53-63. https://doi.org/10.1177/0021998313514260.   DOI
35 Su, C., Wang, X., Ding, L. and Wu, Z. (2020), "Enhancement of mechanical behavior of FRP composites modified by silica nanoparticles", Constr. Build. Mater., 262, 120769. https://doi.org/10.1016/j.conbuildmat.2020.120769.   DOI
36 Nookala, S., Tollamadugu, N.V.K.V.P., Thimmavajjula, G.K. and Ernest, D. (2015), "Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines", Adv. Nano Res., 3(2), 97-109. https://doi.org/10.12989/anr.2015.3.2.097.   DOI
37 Yu, K., Liang, Y., Ma, G., Yang, L., and Wang, T.J. (2019), "Coupling of synthesis and modification to produce hydrophobic or functionalized nano-silica particles", Colloids Surf. A., 574, 122-130. https://doi.org/10.1016/j.colsurfa.2019.04.077.   DOI
38 Su, F.H., and Zhang, Z.Z. (2010), "Friction and wear of Synfluo 180XF wax and nano-SiO2 filled hybrid glass/PTFE fabric composites with phenolic resin binder", Plast. Rubber Compos., 39(8), 350-356. https://doi.org/10.1179/174328910X12691245469998.   DOI
39 Tang, L.C., Zhang, H., Sprenger, S., Ye, L. and Zhang, Z. (2012), "Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles", Compos. Sci. Technol., 72(5), 558-565. https://doi.org/10.1016/j.compscitech.2011.12.015.   DOI
40 Thooyavan, Y., Kumaraswamidhas, L.A., Raj, R.D.E., Binoj, J.S., and Brailson Mansingh, B. (2022), "Effect of combined micro and nano silicon carbide particles addition on mechanical, wear and moisture absorption features of basalt bidirectional mat/vinyl ester composites", Polym. Compos., 43(5), 2574-2583. https://doi.org/10.1002/pc.26557.   DOI
41 Tsai, J.L., Hsiao, H. and Cheng, Y.L. (2010), "Investigating mechanical behaviors of silica nanoparticle reinforced composites", J. Compos. Mater., 44(4), 505-524. https://doi.org/10.1177/0021998309346138.   DOI
42 Islam, M.S., Benninger, L.F., Pearce, G. and Wang, C.H. (2021), "Toughening carbon fibre composites at cryogenic temperatures using low-thermal expansion nanoparticles", Compos. Part A Appl., 150, 106613. https://doi.org/10.1016/j.compositesa.2021.106613.   DOI
43 Liu, H.Y., Wang, G.T., Mai, Y.W. and Zeng, Y. (2011), "On fracture toughness of nano-particle modified epoxy", Compos. B. Eng., 42(8), 2170-2175. https://doi.org/10.1016/j.compositesb.2011.05.014.   DOI
44 Setoodeh, A.R. and Sokhandani, N. (2017), "Mechanical properties investigation of glass/fiber reinforced vinyl ester/clay nanocomposites fabricated by vacuum bag molding", J. Eng. Appl. Sci., 12(13), 3455-3460. https://doi.org/10.36478/jeasci.2017.3455.3460.   DOI
45 Uddin, M.F. and Sun, C.T. (2008), "Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix", Compos. Sci. Technol., 68(7-8), 1637-1643. https://doi.org/10.1016/j.compscitech.2008.02.026.   DOI
46 Xiao, Y., Zou, H., Zhang, L., Ye, X., and Han, D. (2020), "Surface modification of silica nanoparticles by a polyoxyethylene sorbitan and silane coupling agent to prepare high-performance rubber composites", Polym. Test., 81, 106195. https://doi.org/10.1016/j.polymertesting.2019.106195.   DOI
47 Yan, M., Jiao, W., Ding, G., Chu, Z., Huang, Y., and Wang, R. (2019), "High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures", Appl. Surf. Sci., 497, 143802. https://doi.org/10.1016/j.apsusc.2019.143802.   DOI
48 He, P., Huang, M., Yu, B., Sprenger, S. and Yang, J. (2016), "Effects of nano-silica contents on the properties of epoxy nanocomposites and Ti-epoxy assembles", Compos. Sci. Technol., 129, 46-52. https://doi.org/10.1016/j.compscitech.2016.04.014.   DOI
49 Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C. and Sprenger, S. (2010), "The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles", Polymer, 51(26), 6284-6294. https://doi.org/10.1016/j.polymer.2010.10.048.   DOI
50 Imani, A., Zhang, H., Owais, M., Zhao, J., Chu, P., Yang, J. and Zhang, Z. (2018), "Wear and friction of epoxy based nanocomposites with silica nanoparticles and wax-containing microcapsules", Compos. Part A Appl., 107, 607-615. https://doi.org/10.1016/j.compositesa.2018.01.033.   DOI
51 Karnati, S.R., Oldham, D., Fini, E.H., and Zhang, L. (2020), "Application of surface-modified silica nanoparticles with dual silane coupling agents in bitumen for performance enhancement", Constr. Build. Mater., 244, 118324. https://doi.org/10.1016/j.conbuildmat.2020.118324.   DOI
52 Chen, C., Justice, R.S., Schaefer, D.W. and Baur, J.W. (2008), "Highly dispersed nanosilica- epoxy resins with enhanced mechanical properties", Polymer, 49(17), 3805-3815. https://doi.org/10.1016/j.polymer.2008.06.023.   DOI