• Title/Summary/Keyword: Steel Bridge

Search Result 1,667, Processing Time 0.027 seconds

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.

An Experimental Study of the Fatigue Specimen for the Typical Structural Details of the Steel Bridge (강교량의 표준적 구조상세에 대한 실험적 연구)

  • Chung, Yeong Wha;Jo, Jae Byung;Bae, Doo Byong;Jung, Kyoung Sup;Woo, Sang Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.463-473
    • /
    • 2000
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. The welded details included four kinds of welded details corresponding to the categories C, D, E and E' which represent the flange attachment details, web attachment details, transverse stiffeners and cover-plate details. Tensile fatigue tests were performed. The test results were compared with other available test results and the fatigue criteria of AASHTO, JSSC and Eurocode specifications. Generally, our test results were well agreed with other test results and satisfied with above-mentioned fatigue design provisions. However, it was found that transversely loaded weld-details showed lower fatigue strength than longitudinally loaded weld-details in transverse stiffener detail, and the test results of those details were not satisfied with AASHTO fatigue provisions. Examining the effect of length of gusset plate attachment details, welded details with longer attachment showed relatively lower fatigue strength, especially for the out-of-plane gusset plate details. It is recommended to perform additional fatigue tests with various loading and detail parameters and to establish the more detailed fatigue categories such as Eurocode or JSSC

  • PDF

On the Criteria of Reliability Design for the Steel Plate (강판(鋼板)의 신뢰성(信賴性) 설계기준(設計基準))

  • Oh, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.25-36
    • /
    • 1984
  • This paper checked up the safety criteria of the steel structural members by LRFD. And it calculated the resistance and load modulus for it by the proposed method, considering our circumstance, by establisting the taget relability index (${\beta}_0$), and compared their calculated modulus with the nominal safety factors of the road-bridge code and analyzed them. Uncertain quantity measurements fnr the resistance of the steel structural members and for the load effect are due to the method of the uncertain quantity analysis of the load and the resistance, of Galambos-Ravindra and SGST. The summary of the results is as follows: 1) Considering our circumstance, taget relibility index(${\beta}_0$) for current steel structural members are appropriate ${\beta}_0=3.5$. 2) Nominal resistance ${\Phi}^{\prime}$ of the strength design formula for 1) and nominal load modulus ${\gamma}_i^{\prime}$ are as follows; a) Both-sides support plate: ${\Phi}{^{\prime}}=0.75$, ${\gamma}_0{^{\prime}}=1.04$, ${\gamma}_L{^{\prime}}=2.08$ b) One-side support plate: ${\Phi}{^{\prime}}=0.82$, ${\gamma}_0{^{\prime}}=1.04$, ${\gamma}_L{^{\prime}}=2.11$.

  • PDF

Behavior of Stud Shear Connectors in Precast Deck using Lightweight Concrete (경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단연결재의 거동)

  • Cho, Sun Kyu;Lee, Jong Min;Youn, Seok Goo;Choi, Yun Wang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.227-236
    • /
    • 2008
  • The kind of concrete generally used in steel concrete composite bridges is normal-weight concrete whose unit weight is ${2,300kg/m^{3}}$. However, using lightweight concrete in composite bridges diminishes the sectional forces due to the self-weight of concrete decks. As a result, this will make the bridge design more economical. The type of concrete deck that could be adopted in composite bridges using lightweight con crete may be classified into Cast-In-Place (C.I.P.) concrete deck and precast concrete deck. These two types of decks have some differences with respect to structural behavior and constructional method, and hence,structural behavior of stud shear connectors that connect a concrete deck to a steel girder is changed with the type of deck used. In this study, push-out tests were conducted to evaluate the characteristics of static behavior of the stud shear connectors with a precast deck using lightweight concrete. Also, additional precast deck specimens with bedding layer that had shear keys and devices for transverse confinement of the bedding layer for the prevention of cracks occurring in the bedding layer were tested. These cracks The efficiency of these devices was then evaluated.

Effects of Interactions between the Concrete Deck and Steel Girders on the Behavior of Simply Supported Skew Bridges (단순 사교의 거동에 미치는 콘크리트 상판과 주형간의 상호작용 효과)

  • Moon Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.203-212
    • /
    • 2006
  • Although composite construction has many mechanical advantages over noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction caused large stresses in the bridge deck. But there is somewhat difficulty to apply noncomposite construction in the field because of the structural problem such as the slip at the interface between the concrete deck and steel girders. In this study, the validity of the application of the composite construction to skew angles with large skew angles is investigated by analyzing effects of two interactions such as composite and noncomposite actions between the concrete deck and steel girders on the behavior of skew bridges. A series of parametric studies for the total 27 simply supported skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The improvement of the behavior of composite skew bridges was examined by using the concept of the stiffness adjustment of bearings which I suggested in previous research. Results of analyses show that a more desirable behavior of skew bridges can be obtained from composite construction instead of noncomposite construction and the method of the stiffness adjustment of bearings results in a more rational and economical design of composite skew bridges and substructures.

Stability Analysis of Steel Cable-stayed Bridges under Construction Stage (폐합 전 강사장교의 안정성 해석)

  • Kim, Seung-Jun;Shim, Kyung-Suk;Won, Deok-Hee;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.99-111
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges in the construction stage, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the P-${\Delta}$ effects of the girder and mast, and the large displacement effect. Initial shape analysis and construction-stage analysis were performed to determine the equilibrium of the structure in the construction stage. After that, geometric nonlinear analysis was performed to study structural stability. In this study, the weight of the derrick crane and the key segment were considered the main external loads, which were applied to the tip of the center span. The cable arrangement type and the stiffness ratios of the girder and mast were considered the main parameters of the analytic research. Based on the results of the analysis, the change in the buckling mode and critical load factors with respect to the cable arrangement type and the stiffness ratios of the girder and mast was investigated. The buckling modes of the steel cable-stayed bridges in the construction stage were classified, and the ranges of the stiffness ratios of the girder and mast, which show these classified buckling modes, were suggested.

An Experimental Study of Demountable Bolted Shear Connectors for the Easy Dismantling and Reconstruction of Concrete Slabs of Steel-Concrete Composite Bridges (강합성 교량의 콘크리트 바닥판 해체 및 재시공이 용이한 분리식 볼트접합 전단연결재에 관한 실험적 연구)

  • Jung, Dae Sung;Park, Se-Hyun;Kim, Tae Hyeong;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.751-762
    • /
    • 2022
  • Welded head studs are mainly used as shear connectors to bond steel girders and concrete slabs in steel-concrete composite bridges. For welded shear connectors, environmental problems include noise and scattering dust which are generated during the removal of damaged or aged slabs. Therefore, it is necessary to develop demountable shear connectors that can easily replace aged concrete slabs for efficient maintenance and thus for better management of environmental problems and life cycle costs. The buried nut method is commonly studied in relation to bolted shear connectors, but this method is not used in civil structures such as bridges due to low rigidity, low shear resistance, and increased initial slip. In this study, in order to mitigate these problems, a demountable bolted shear connector is proposed in which the buried nut is integrated into the stud column and has a tapered shape at the bottom of an enlarged column shank. To verify the performance of the proposed demountable stud bolts in terms of static shear strength and slip displacement, a horizontal shear test was conducted, with the performance outcomes compared to those of conventional welded studs. It was confirmed that the proposed demountable bolted shear connector is capable of excellent shear performance and that it satisfies the slip displacement and ductility design criteria, meaning that it is feasible as a replacement for existing welding studs.

A Study on the Structural Behavior and Safety Evaluation based on Field Measurement Value of Launching Truss (런칭 트러스의 안전성 평가 및 실측치에 기초한 구조거동에 관한 연구)

  • Park, Young Hoon;Lee, Seung Yong;Jeon, Jun Chang;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.383-391
    • /
    • 1998
  • Launching truss used for constructing the precast segmental concrete bridge has upper chord, lower chord and diagonal members. And the pin is used for connecting these members. From the field loading test carried out for investigating the actual behavior of launching truss, the great difference is analyzed between measured stress and calculated stress. Based on measured value, the structural analysis are carried out about assumed abnormal behavior of connection part. From the results of analysis, it is analyzed that the abnormal behavior of connection part greatly affect the structural behavior of launching truss. In addition, from the investigation of safety of launching truss, it is evaluated that the launching truss has enough safety with normal behavior of connection part.

  • PDF

Dynamic Analysis of MABB(Multiple Arches Bowstring Bridge) and Single Arch Subjected to Moving Loads (이동하중을 받는 다중아치와 일반아치의 동적거동 분석)

  • Yhim, Sung Soon;Kim, Dong Yong;Son, Suk Ho;Kong, Min Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.537-547
    • /
    • 2005
  • MABB(Editor's note: Please spell out "MABB" upon first mention)is a new structural type of arch that connects arch ribs and stiffened girders with two internal arches. In this study, the static and dynamic behavior of MABB were analyzed in comparison with those of conventional arches for the investigation of the structural effect of MABB on moving loads. For the purpose of surveying the effect of internal arches on the dynamic behavior of structure, natural frequency and natural vibration mode were investigated and the static and dynamic behavior were analyzed by the method of idealizing train loads as traveling loads consisting of a group of concentrated loads. From the results, the following conclusions were known. First, it is concluded that with MABB, decreasing the section of stiffened girders is possible as compared with conventional arches because the increase of stiffness by internal arches is larger than that of the mass of internal arches. Second, MABB has the advantage of assurance of stability of dynamic behavior because the dynamic behavior of MABB on moving loads is usually investigated in a more stable way than that of conventional arches.

An overall wind shielding program for enhancing driving stability (강풍시 도로의 주행안정성을 확보하기 위한 종합적인 방풍대책)

  • Kwon, Soon Duck;Jeong, Un Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.263-270
    • /
    • 2005
  • This paper presents a program for protecting vehicles against side winds on highways. The present study consists of three processes. The first one involves giving a guideline for evaluating driving safety in high winds. The second one involves making a guideline for determining the necessity of wind protection system for a certain road area. A reasonable procedure is suggested based on the probability model of wind data on weather stations and the correction of local topographical conditions. The third one involves design of wind barriers. Both CFD analyses and wind tunnel tests were performed to find the proper type of wind barrier considering vehicle controllability, structural safety, economical efficiency as well as driver's visibility. Performance of the designed wind fences was verified from field tests. The performance of the four different types of wind barrier installed at the elevated bridge were tested and some of the results were provided.